• Title/Summary/Keyword: Rolling stock Maintenance

Search Result 132, Processing Time 0.027 seconds

A Study on the Application of Maintenance for Rolling Stock (철도차량 유지보수 적용방향에 관한 연구)

  • Lee, Kang-Sung;Sohn, Woong;Kang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1655-1660
    • /
    • 2009
  • At the Rolling-stock, most important thing is thorough maintenance for safety as a mass transit. Recently, many studies of cost down method and acquisition of high reliability have being progressed with considering of safety. Maintenance cost is closely relative to the preventive maintenance. But generally the preventive maintenance is decided in compliance with an experience. So the study of cost down method at the preventive maintenance is difficult. In this study, many results of effectiveness and optimization for the preventive maintenance are checked. Then., it is possible that efficiency preventive maintenance method will be able to suggest.

  • PDF

A Study on the Damper Displacements of High Speed Rolling-stock Running on Service Lines (실선로 주행에 따른 고속철도차량 댐퍼 변위에 대한 연구)

  • Hur H.M.;Lee C.W.;You W.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.261-262
    • /
    • 2006
  • This study was intended to research the displacement characteristics of dampers for Korea hish-speed rolling-stock for the purpose of developing the protective and maintenance technology of damper. For this, we measured the displacements of dampers in the actual running conditions of high speed railway vehicles. Displacement data were analyzed depending on the service sections, with which the valuable data necessary for maintenance in the future could be obtained.

  • PDF

A study on the Maintenance efficiency of the Rolling-stock (철도차량 정비효율화에 관한 연구)

  • Yu, Yang-Ha;Kim, Kwan-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1494-1500
    • /
    • 2008
  • Life cycle of the rolling stock is normally 20 to 40 years, though there is some difference in accordance with each vehicle. Maintenance cost is over the twice of purchasing price. and also it is true that precise statics is not managed properly except for some developed countries due to the difference of maintenance method, skills. After KORAIL introduced ERP system in 2007, maintenance cost is managed by type of cars, by unit. but, afterwards it should be controlled as an index and also more precisely. it is the best pending issues to make train maintenance efficiency, to utilize accumulated indexes. I want to attribute to train maintenance efficiency by analysing what is the problems in the present maintenance method.

  • PDF

A Study on the Standard and Information System for Urban Transit Maintenance (도시철도 유지보수체계 표준화 및 정보화에 대한 연구)

  • Ahn, Tae-Ki;Shin, Jeong-Ryol;Park, Kee-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.539-543
    • /
    • 2006
  • We need to make the standards of maintenance information for urban transit to reduce the cost to maintain the information and to share the information with maintenance workers. It is enable to do systematic maintenance for urban transit by using the information system based on the standardized information. In this paper we propose the major items to standardize and the methods to lay out the standard schemes to enable structured maintenance. We present the 4 items, bill of material, material classification, accident/fault classification, electronic document, to standardize. And we propose how to implement the information system for urban transit based on the standardized information. We describe the implemented information system in two parts; a rolling-stock and an infrastructure part. And also we describe the result of survey to evaluate the system installed at Seoul Metro and Seoul Metropolitan Rapid Transit.

A Study on Disposal Method of Non-Point Pollutant of the Rolling Stock Depot (철도 차량기지내 비점오염물 처리방안 연구)

  • Jung, Jae-Hyoung;Shin, Min-Ho;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2910-2916
    • /
    • 2011
  • Environmental conservation is becoming the major conversation topic in the 21st century, the era of environment. In the Law for the Preservation of Water Quality, article 53 states "A business unit which is doing business causing pollution caused by non-point pollutant or builds waste water discharge facilities, should report the installation of the non-point pollutant and install the required pollution control facilities". Environmental pollution caused by oil leaks during operation or maintenance has been found in the railway sector. Especially, rolling stock depot is most likely to be affected by environmental pollution. Therefore, in this paper We have investigated non-point pollutant in the rolling stock depot area and have studied adequate disposal method to minimize the effect of the non-point pollutant, hoping to supply the preliminary data for building an environment-friendly rolling stock depot.

  • PDF

A Study on the Structural Analysis for the Aluminum Alloy Carbody of a Double-Deck EMU (2층열차 차체의 구조강도해석에 관한 연구)

  • Hwang Won-Ju;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.91-97
    • /
    • 2003
  • In many countries such as Japan, France and so on, the number of double-deck trains has been dramatically increased for the purpose of public traffic. Several researchers have performed feasiblilty studies related to the operations of double deck rolling stock vehicles in Korea since 2001. In recent years, rolling stock vehicles are required to have light weight to save energy consumption and maintenance costs. For these reasons, the standard EMU vehicle developed by KRRI and Kwan-Ju EMU(Electric Multi Unit) are made of aluminum extruded panels. The concept model of a double-deck rolling stock vehicle investigated in this study is also designed to use AEP(Aluminum Extruded Panel). In this paper, the methods related to the structural strength improvements of the car body are proposed through careful modifications of thicknesses and shapes of AEP.

  • PDF

A Study on the Daily Inspection of the Rolling-stocks (철도차량 일상검수 주기 및 방법에 관한 연구)

  • Yu, Yang-Ha;Lee, Nak-Young;Kim, Ho-Soon
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1642-1649
    • /
    • 2010
  • At present, KORAIL is in the middle of renovating. All steps exert great effort at cost reduction and a profit improvement. Especially to improve maintenance method and inspection period at the rolling-stock division lots of research is under progress. Daily inspection of rolling stocks is to operate the rolling stock normally. Daily inspection items are driving control device, coupling device, brake system, water system and air conditioning system, electrical system etc. Half of the maintenance manpower are inputted at daily inspection. Strengthens the quality and optimize the proportion of daily inspection are urgent problem. Daily inspection period extension aim is as follows. KTX from 3,500km to 5,000km, passenger car from 1st to 3,500km, new style electric locomotive from 2nd to 5,000km, the diesel locomotive is 2,800km from 1,200km. In this paper, the optimal daily inspection period and methods are considered including expected problem and counter measures.

  • PDF

A Study on Determining the Optimal Replacement Interval of the Rolling Stock Signal System Component based on the Field Data (필드데이터에 의한 철도차량 신호장치 구성품의 최적 교체주기 결정에 관한 연구)

  • Byoung Noh Park;Kyeong Hwa Kim;Jaehoon Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.104-111
    • /
    • 2023
  • Rolling stock maintenance, which focuses on preventive maintenance, is typically implemented considering the potential harm that may be inflicted to passengers in the event of failure. The cost of preventive maintenance throughout the life cycle of a rolling stock is 60%-75% of the initial purchase cost. Therefore, ensuring stability and reducing maintenance costs are essential in terms of economy. In particular, private railroad operators must reduce government support budget by effectively utilizing railroad resources and reducing maintenance costs. Accordingly, this study analyzes the reliability characteristics of components using field data. Moreover, it resolves the problem of determining an economical replacement interval considering the timing of scrapping railroad vehicles. The procedure for determining the optimal replacement interval involves five steps. According to the decision model, the optimal replacement interval for the onboard signal device components of the "A" line train is calculated using field data, such as failure data, preventive maintenance cost, and failure maintenance cost. The field data analysis indicates that the mileage meter is 9 years, which is less than the designed durability of 15 years. Furthermore, a life cycle in which the phase signal has few failures is found to be the same as the actual durability of 15 years.

A Study for Application of Train Information Collection Device using RTD System (무선 전송 장치를 이용한 열차정보 수집 장치 개선 방안에 관한 연구)

  • Shin, Han-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.541-545
    • /
    • 2010
  • Because contemporary rolling stock system is complex and highly advanced, and it builds mutual interface, it is necessary to manage maintenance of rolling stock systematically. This study present a case, which shows how to adopt and apply RTD(Remote Transmission Device) integrated to train information collection device. After the train service is complete and the train enters the main subway station, various kinds of information collected from TCMS(Train Control Monitoring System) is transmitted to train depot information collection device through RTD. This study suggests that RTD integrated to train information collection device helps build an effective rolling stock maintenance system by improving reliability of data transmission and cutting maintenance costs.