• Title/Summary/Keyword: Rolling and cooling

Search Result 124, Processing Time 0.023 seconds

Numerical Study on the Natural Circulation Characteristics in an Integral Type Marine Reactor for Inclined Conditions

  • Kim, Tae-Wan;Park, Goon-Cherl;Kim, Jae-Hak
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.397-408
    • /
    • 2001
  • A marine reactor shows very different thermal-hydraulic characteristics compared to a land- based reactor. Especially, study on the variation of flow field due to ship motions such as inclination, heaving and rolling is essential since the flow variation has great influence on the reactor cooling capability. In this study, the natural circulation characteristics of integral type marine reactor with modular steam generators were analyzed using computational fluid dynamics code, CFX-4, for inclined conditions. The numerical analyses are performed using the results of natural circulation experiments for integral reactor which are already conducted at Seoul National University. From the results, it was found that the flow rate in the ascending steam generator cassettes increases due to buoyancy effect. Due to this flow variation, temperature difference occurs at the outlets of the each steam generator cassettes. which is mitigated through downcomer by thermal mixing. Also, around the upper pressure header the flow from descending hot leg goes up to the ascending steam generator cassettes due to large natural circulation driving force in ascending steam generator cassettes. From this result, the increase of How rate in the ascending steam generator cassettes could be understood qualitatively.

  • PDF

Effects of B and Cu Additions on the Microstructure and Mechanical Properties of High-Strength Bainitic Steels (베이나이트계 고강도강의 미세조직과 기계적 특성에 미치는 B 및 Cu 첨가의 영향)

  • Yim, H.S.;Lee, S.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.2
    • /
    • pp.75-81
    • /
    • 2015
  • Effects of B and Cu additions on the microstructure and mechanical properties of high-strength bainitic steels were investigated in this study. Six kinds of high-strength bainitic steels with different B and Cu contents were fabricated by thermo-mechanical control process composed of controlled rolling and accelerated cooling. The microstructures of the steels were analyzed using optical and transmission microscopy, and the tensile and impact tests were conducted on them in order to investigate the correlation of microstructure with mechanical properties. Depending on the addition of B and Cu, various low-temperature transformation products such as GB (granular bainite), DUB (degenerated upper bainite), LB (lower bainite), and LM (lath martensite) were formed in the steels. The addition of B and Cu increased the yield and tensile strengths because of improved hardenability and solid solution strengthening, but decreased the ductility and low-temperature toughness. The steels containing both B and Cu had a very high strength above 1.0 GPa, but showed a worse low-temperature toughness of higher DBTT (ductile-to-brittle transition temperature) and lower absorbed energy. On the other hand, the steels having GB and DUB showed a good combination of tensile and impact properties in terms of strength, ductility, yield ratio, absorbed energy, and DBTT.

Effect of Strain Aging on the Tensile Properties of an API X70 Linepipe Steel (API X70 라인파이프강의 인장 특성에 미치는 변형 시효의 영향)

  • Lee, Seung-Wan;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.524-529
    • /
    • 2017
  • The effect of strain aging on the tensile properties of API X70 linepipe steel was investigated in this study. The API X70 linepipe steel was fabricated by controlled rolling and accelerated cooling processes, and the microstructure was analyzed using optical and scanning electron microscopes and electron backscatter diffraction. Strain aging tests consisting of 1 % pre-strain and thermal aging at $200^{\circ}C$ and $250^{\circ}C$ were conducted to simulate U-forming, O-forming, Expansion(UOE) pipe forming and anti-corrosion coating processes. The API X70 linepipe steel was composed of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite whose volume fraction was dependent on the chemical composition and process conditions. As the thermal aging temperature increased, the steel specimens showed more clearly discontinuous type yielding behavior in the tensile stress-strain curve due to the formation of a Cottrell atmosphere. After pre-strain and thermal aging, the yield and tensile strengths increased and the yield-to-tensile strength ratio decreased because yielding and aging behaviors significantly affected work hardening. On the other hand, uniform and total elongations decreased after pre-strain and thermal aging since dislocation gliding was restricted by increased dislocation density after a 1 % pre-strain.

Effects of Tempering Treatment on Microstructure and Mechanical Properties of Cu-Bearing High-Strength Steels (템퍼링에 따른 Cu 첨가 고강도강의 미세조직과 기계적 특성)

  • Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.550-555
    • /
    • 2014
  • The present study deals with the effects of tempering treatment on the microstructure and mechanical properties of Cu-bearing high-strength steels. Three kinds of steel specimens with different levels of Cu content were fabricated by controlled rolling and accelerated cooling, ; some of these steel specimen were tempered at temperatures ranging from $350^{\circ}C$ to $650^{\circ}C$ for 30 min. Hardness, tensile, and Charpy impact tests were conducted in order to investigate the relationship of microstructure and mechanical properties. The hardness of the Cu-added specimens is much higher than that of Cu-free specimen, presumably due to the enhanced solid solution hardening and precipitation hardening, result from the formation of very-fine Cu precipitates. Tensile test results indicated that the yield strength increased and then slightly decreased, while the tensile strength gradually decreased with increasing tempering temperature. On the other hand, the energy absorbed at room and lower temperatures remarkably increased after tempering at $350^{\circ}C$; and after this, the energy absorbed then did not change much. Suitable tempering treatment remarkably improved both the strength and the impact toughness. In the 1.5 Cu steel specimen tempered at $550^{\circ}C$, the yield strength reached 1.2 GPa and the absorbed energy at $-20^{\circ}C$ showed a level above 200 J, which was the best combination of high strength and good toughness.

Microstructure and Tensile Properties of 700 MPa-Grade High-Strength and Seismic Resistant Reinforced Steel Bars (700 MPa급 고강도 및 내진 철근의 미세조직과 인장 특성)

  • Hong, Tae-Woon;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.391-397
    • /
    • 2018
  • This study deals with the microstructure and tensile properties of 700 MPa-grade high-strength and seismic reinforced steel bars. The high-strength reinforced steel bars (600 D13, 600 D16 and 700 D13 specimens) are fabricated by a TempCore process, while the seismic reinforced steel bar (600S D16 specimen) is fabricated by air cooling after hot rolling. For specimens fabricated by the TempCore process, the 600 D13 and 600 D16 specimens have a microstructure of tempered martensite in the surface region and ferrite-pearlite in the center region, while the 700 D13 specimen has a microstructure of tempered martensite in the surface region and bainite in the center region. Therefore, their hardness is the highest in the surface region and shows a tendency to decrease from the surface region to the center region because tempered martensite has a higher hardness than ferrite-pearlite or bainite. However, the hardness of the 600S D16 specimen, which is composed of fully ferrite-pearlite, increases from the surface region to the center region because the pearlite volume fraction increases from the surface region to the center region. On the other hand, the tensile test results indicate that only the 700 D13 specimen with a higher carbon content exhibits continuous yielding behavior due to the formation of bainite in the center region. The 600S D16 specimen has the highest tensile-to-yield ratio because the presence of ferrite-pearlite and precipitates caused by vanadium addition largely enhances work hardening.

Characteristics of Indium Tin Oxide Films Grown on PET Substrate Grown by Using Roll-to-Roll (R2R) Sputtering System (롤투롤 스퍼터 시스템을 이용하여 PET 기판위에 성막 시킨 ITO 박막의 특성 연구)

  • Cho, Sung-Woo;Choi, Kwang-Hyuk;Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Jin-A;Jeong, Soon-Wook;Park, No-Jin;Kim, Han-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2008
  • The electrical, optical, structural and surface properties of an indium tin oxide (ITO) film grown on a flexible PET substrate using a specially designed roll-to-roll (R2R) sputtering system as a function of the DC power, $Ar/O_2$ flow ratio, and rolling speed is reported. It was observed that both the electrical and optical properties of the ITO film on the PET substrate were critically dependent on the $Ar/O_2$ flow ratio. In addition, x-ray diffraction examination results showed that the structure of the ITO film on the PET substrate was an amorphous structure regardless of the DC power and the $Ar/O_2$ flow ratio due to a low substrate temperature, which was maintained constant by a main cooling drum. Under optimized conditions, ITO film with resistivity of $6.44{\times}10^{-4}{\Omega}-cm$ and transparency of 86% were obtained, even when prepared at room temperature. Furthermore, bending test results exhibited that R2R-grown ITO film had good flexibility which would be applicable to flexible displays and solar cells.

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

A Study on the Stretch-flangeability of Hot-Rolled High Strength Steel with Ferrite-Bainite Duplex Microstructure (페라이트-베이나이트 복합조직 고강도 열연강판의 신장플랜지 특성에 관한 연구)

  • Cho, Yeol-Rae;Chung, Jin-Hwan;Koo, Hwang-Hoe;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1252-1262
    • /
    • 1999
  • The effect of microstructures on the strength-flangeability of Nb bearing hot-rolled high strength steel was investigated in order to improve the strength-flangeability of conventional TS 580MPa grades HSLA steel for the automotive wheel disc. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling was effective to produce the Nb-bearing high strength steel with the polygonal ferrite and bainite duplex microstructures. It was suggested that the suppressed precipitation of grain boundary cementites and the decreased hardness difference between ferrite matrix and bainite cause the excellent stretch-flangeability of ferrite-bainite duplex microstructure steel. Therefore, the formation and propagation of microcracks were suppressed relative to the conventional HSLA steel with ferrite and pearlite microstructure. In addition, the elongation was improved as compared with that of hot-rolled steel sheets using conventional early cooling pattern because the volume fraction of polygonal ferrite was increased.

  • PDF

A Semi-analytical Approach for Numerical Analysis of Residual Stress in Oxide Scale Grown on Hot-rolled Steels (열간압연강에서 형성된 산화물 스케일의 잔류 응력 수치 분석을 위한 준해석적 방법 개발)

  • Y.-J. Jun;J.-G. Yoon;J.-M. Lee;S.-H. Kim;Y.-C. Kim;S. Nam;W. Noh
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.200-207
    • /
    • 2024
  • In this study, we developed a semi-analytical approach for the numerical analysis of residual stress in oxide scales formed on hot-rolled steels. The oxide scale, formed during the hot rolling process, experiences complex interactions due to thermal and mechanical influences, significantly affecting the material's integrity and performance. Our research focuses on integrating various stress components such as thermal stress, growth stress, and creep behavior to predict the residual stress within the oxide layer. The semi-analytical method combines analytical expressions for each stress component with numerical integration to account for their cumulative effects. Validation through instrumented indentation tests confirms the reliability of our model, which considers thermal expansion coefficient (CTE) differences, scale growth, and creep-induced stress relaxation. Our findings indicate that thermal stress resulting from CTE differences significantly impacts the overall residual stress, with growth stress contributing a compressive component during cooling, and creep behavior playing a minor role in stress relaxation. This comprehensive approach enhances the accuracy of residual stress prediction, facilitating the optimization of material design and processing conditions for hot-rolled steel products.

Development of a 25kW-Class PEM Fuel Cell System for the Propulsion of a Leisure Boat (선박 추진용 25kW급 고분자전해질 연료전지 시스템 개발)

  • Han, In-Su;Jeong, Jeehoon;Kho, Back-Kyun;Choi, Choeng Hoon;Yu, Sungju;Shin, Hyun Khil
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.3
    • /
    • pp.271-279
    • /
    • 2014
  • A 25kW-class polymer electrolyte membrane (PEM) fuel cell system has been developed for the propulsion of a leisure boat. The fuel cell system was designed to satisfy various performance requirements, such as resistance to shock, stability under rolling and pitching oscillations, and durability under salinity condition, for its marine applications. Then, the major components including a 30kW-class PEM fuel cell stack, a DC-DC converter, a seawater cooling system, secondary battery packs, and balance of plants were developed for the fuel cell system. The PEM fuel cell stack employs a unique design structure called an anodic cascade-type stack design in which the anodic cells are divided into several blocks to maximize the fuel utilization without hydrogen recirculation devices. The performance evaluation results showed that the stack generated a maximum power of 31.0kW while maintaining a higher fuel utilization of 99.5% and an electrical efficiency of 56.1%. Combining the 30-kW stack with other components, the 25kW-class fuel cell system boat was fabricated for a leisure. As a result of testing, the fuel cell system reached an electrical efficiency of 48.0% at the maximum power of 25.6kW with stable operability. In the near future, two PEM fuel cell systems will be installed in a 20-m long leisure boat to supply electrical power up to 50kW for propelling the boat and for powering the auxiliary equipments.