DOI QR코드

DOI QR Code

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L. (College of Materials Science and Engineering, Hunan University) ;
  • He, Y.Q. (College of Mechanical Engineering, Huaihai Institute of Technology) ;
  • Wang, Na (Department of Human Resources, Huaihai Institute of Technology) ;
  • Chen, Z.H. (College of Materials Science and Engineering, Hunan University) ;
  • Chen, Z.G. (College of Materials Science and Engineering, Hunan University) ;
  • Yan, H.G. (College of Materials Science and Engineering, Hunan University) ;
  • Xu, Z.K. (College of Materials Science and Engineering, Hunan University)
  • Received : 2007.10.02
  • Accepted : 2008.11.07
  • Published : 2009.12.01

Abstract

The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

Keywords

References

  1. D. J. Skinner, R. L. Bye, D. Raybould and A. M. Brown, Dispersion strengthened Al–Fe–V–Si alloys, Scripta Metallurgica 20, 867–872 (1986) https://doi.org/10.1016/0036-9748(86)90456-4
  2. S. Hariprasad, S. M. L. Sastry, K. L. Jerina and R. J. Lederich, Microstructures and mechanical properties of dispersion-strengthened high-temperature Al–8.5Fe–1.2V–1.7Si alloys produced by atomized melt deposition process, Metall. Trans. A 24, 865–873 (1993) https://doi.org/10.1007/BF02656507
  3. S. C. Khatri, A. Lawley, M. J. Koczak and K. G. Grassett, Creep and microstructural stability of dispersion strengthened Al–Fe–V–Si–Er alloy, Mater. Sci. Engng A 167, 11–21 (1993) https://doi.org/10.1016/0921-5093(93)90331-8
  4. U. Prakash, T. Raghu, A. A. Gokhale and S. V. Kamat, Microstructure and mechanical properties of RSP/M Al–Fe–V–Si and Al–Fe–Ce alloys, J. Mater. Sci. 34, 5061–5065 (1999) https://doi.org/10.1023/A:1004700830936
  5. M. N. Srinivasan and S. D. Little, Effect of melt spinning variables on the structure and properties of a dispersion strengthened Al–Fe–V–Si alloy, Scripta Metall. Mater. 32, 1153–1158 (1995) https://doi.org/10.1016/0956-716X(95)00117-E
  6. K. L. Sahoo, S. K. Das and B. S. Murty, Formation of novel microstructures in conventionally cast Al–Fe–V–Si alloys, Mater. Sci. Engng A 355, 193–200 (2003) https://doi.org/10.1016/S0921-5093(03)00064-9
  7. J. $\check{C}$adek, K. Kucha$\check{r}$ov$\acute{a}$ and S. J. Zhu, High temperature creep behavior of an Al–8.5Fe–1.3V–1.7Si alloy reinforced with silicon carbide particulates, Mater. Sci. Engng A 283, 172–180 (2000) https://doi.org/10.1016/S0921-5093(00)00706-1
  8. S. Yaneva, A. Kalkanlı, K. Petrov, R. Petrov, Ir. Yvan Houbaert and S. Kassabov, Structure development in rapidly solidified Al–Fe–V–Si ribbons, Mater. Sci. Engng A 373, 90–98 (2004) https://doi.org/10.1016/j.msea.2003.12.034
  9. F. Carre$\tilde{n}$o, M. T. P$\acute{e}$rez-Prado, G. Gonz$\acute{a}$lez-Doncel and O. A. Ruano, Texture stability of a rapidly solidified dispersion strengthened Al–Fe–V–Si material, Scripta Mater. 38, 1427–1433 (1998) https://doi.org/10.1016/S1359-6462(98)00039-6
  10. B. Lu, D. Q. Yi, W. X. Li, Z. M. Yu and L. Zhu, Thermal stability of multi-spray deposition heat resistant Al–Fe–V–Si alloy, Trans. Nonferr. Metals Soc. China 12, 273–276 (2002)
  11. I. S. Kim, N. J. Kim and S.W. Nam, Temperature dependence of the optimum particle size for the dislocation detachment controlled creep of Al–Fe–V–Si/SiCP composite. Scripta Metall. Mater. 32, 1813–1819 (1995) https://doi.org/10.1016/0956-716X(95)00016-O
  12. R. E. Franck and J. A. Hawk, Effect of very high temperatures on the mechanical properties of Al–Fe–V–Si alloy, Scripta Metall. 23, 113–118 (1989) https://doi.org/10.1016/0036-9748(89)90103-8
  13. J. C. Lee, H. K. Seok and H. I. Lee, Alloy design of thixoformable wrought SiC/Al alloy composites, Mater. Res. Bull. 34, 35–41 (1999) https://doi.org/10.1016/S0025-5408(98)00215-3
  14. M. Sherif El-Eskandarany, Mechanical solid state mixing for synthesizing of SiC/Al nanocomposites, J. Alloys Compounds 279, 263–271 (1998) https://doi.org/10.1016/S0925-8388(98)00658-6
  15. J. C. Lee, J. Y. Byun, H. K. Seok, C. S. Oh and H. I. Lee, Prediction of Si contents to suppress the formation of Al4C3 in the SiCP/Al composite, Acta Mater. 46, 1771–1780 (1998) https://doi.org/10.1016/S1359-6454(97)00265-6
  16. D. S. Shin, J. C. Lee, E. P. Yoon and H. I. Lee, Effect of the processing methods on the formation of $Al_4C_3$ in SiCP/2024Al composites, Mater. Res. Bull. 32, 1155–1163 (1997) https://doi.org/10.1016/S0025-5408(97)00088-3
  17. J. K. Park and J. P. Lucas,Moisture effect on SiCP/6061AlMMC: dissolution of interfacial $Al_4C_3$, Scripta Mater. 37, 511–516 (1997) https://doi.org/10.1016/S1359-6462(97)00133-4
  18. J. B.Wen, J. M. Zhang,W. Zhang, Z. Q. Zhang, Y. H. Zhang and H. F. Zhang, The crystallographic features of Al4C3 phase in hot-dip aluminized steel, Trans. Mater. Heat Treatment 27, 75–78 (2006)
  19. J. C. Romero and R. J. Arsenault, Anomalous penetration of Al into SiC, Acta Metall. Mater. 43, 849–857 (1995) https://doi.org/10.1016/0956-7151(94)00250-L
  20. M. J. Couper, J. W. Luster and M. Thumann, Development of elevated temperature powder metallurgy aluminum alloys, Powder Metall. Intl 23, 7–151 (1991)
  21. M. Y. Zhan, Z. H. Chen andW. J. Zia, Effects of high temperatures on the hardness and microstructure of spray-deposited heat-resistant 8009 aluminum alloy, J. Mater. Engng 3, 35–37 (2004)
  22. P. S. Gilman and S. K. Das, Rapidly solidified aluminum alloys for high temperature/high stiffness applications, Metal Powder Report 44, 616–620 (1989)
  23. R. Hambleton, H. Jones and W. M. Rainforth, Effect of alloy composition and reinforcement with silicon carbide on the microstructure and mechanical properties of three silicide dispersion strengthened aluminium alloys, Mater. Sci. Engng A 304–306, 524–528 (2001) https://doi.org/10.1016/S0921-5093(00)01508-2
  24. V. Garibay-Febles, H. A. Calderon, F. C. Robles-Hern$\acute{a}$ndez, M. Umemoto, K. Masuyama and J. G. Caba$\tilde{n}$as, Production and characterization of (Al, Fe)–C (graphite or fullerene) composites prepared by mechanical alloying, Mater. Manuf. Proc. 15, 547–576 (2000) https://doi.org/10.1080/10426910008913005
  25. M. Besterci, Preparation, microstructure and properties of Al–$Al_4C_3$ system produced by mechanical alloying, Materials and Design 27, 416–421 (2006) https://doi.org/10.1016/j.matdes.2004.11.012
  26. Z. H. Chen, Y. Q. He, H. G. Yan, Z. G. Chen, X. J. Yin and G. Chen, Ambient temperature mechanical properties of Al–8.5Fe–1.3V–1.7Si/SiCP composite, Mater. Sci. Engng A 460–461, 180–185 (2007) https://doi.org/10.1016/j.msea.2007.02.105