• Title/Summary/Keyword: Rolling Parameter

Search Result 111, Processing Time 0.026 seconds

Development of Technique Predicting of the Wear of DCI Roll Using Carbon Steel in Hot Rod Rolling Process (탄소강 선재 압연공정의 DCI 롤 마멸 예측 기술의 개발)

  • Kim, Dong-Hwan;Kim, Byeong-Min;Lee, Yeong-Seok;Yu, Seon-Jun;Ju, Ung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1736-1745
    • /
    • 2002
  • The objective of this study is to predict the roll wear in hot rod rolling process. In this study hot rod rolling process for round and oval passes has been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the thermal softening of DCI (Ductile Cast Iron) roll according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering parameter curve. 3D wear program developed in this study might be used for adjusting the gap of rolls to set up a suitable rolling schedule for keeping dimensional tolerance of the product.

A Study on Rolling Contact Fatigue of Rail by Damage Mechanics (손상역학에 의한 레일의 구름접촉피로 연구)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.931-937
    • /
    • 2008
  • The rail/wheel rolling contact affects the microstructure in the surface layer of rail. Recently. continuum damage mechanics allows us to describe the microprocesses involved during the straining of materials and structures at the macroscale. Elastic and plastic strains. the corresponding hardening effects are generally accepted to be represented by global continuum variables. The purpose of continuum damage mechanics is to introduce the possibility of describing the coupling effects between damage processes and the stress-strain behavior of materials. In this study. the continuum damage mechanics caused by elastic deformation was briefly introduced and applied to the fatigue damage of the rails under the condition of cyclic loading. The material parameter for damage analysis was first determined so that it could reproduce the life span under the compressive loading in the vicinity of fatigue limit. Some numerical studies have been conducted to show the validity of the present computational mechanics analysis.

An Elastohydrodynamic Lubrication of Elliptical Contacts : Part II - The Effect of Spin Motion (타원접촉의 탄성유체윤활 : 제2보 - 스핀운동의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.49-55
    • /
    • 2007
  • A numerical analysis of elastohydrodynamic lubrication of elliptical contacts with both rolling and spinning has been carried out. A finite difference method with non-uniform grid systems and the Newton-Raphson method are applied to solve the problems. The velocity vectors resulting from combined spinning and rolling/sliding motion lead to asymmetric pressure distributions and film shapes. Pressure distributions, film contours and variations of the minimum and central film thicknesses are compared with various spin-roll ratios. Reduction of the minimum film thickness under spinning is remarkable whereas the central film thickness is relatively less. The spin motion have large effect on variations of the minimum film thickness with load parameter which are small in pure rolling/sliding cases. Therefore present numerical scheme can be used in the analysis of general elliptical contact EHL problems and further studies are required.

Higher Order Statistical Analysis of Sound-Vibration Signal in Rolling Element Bearing with defects (결함이 있는 회전요소 베어링에서 음향-진동 신호의 고차 통계해석)

  • 이해철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.49-56
    • /
    • 1999
  • This paper present a study on the application of sound pressure and vibration signals to detect the presence of defects in a rolling element bearing using a statistical analysis method. The well established statistical parameters such as the crest factor and the distribution of moments including kurtosis and skewless are utilized in this study. In addition, other statistical parameters derived from the beta distribution function are also used. A comparison study on the performance of the different types of parameter used is also performed. The statistical analysis is used because of its simplicity and quick computation. Under ideal conditions, the statistical method can be used to identify the different types of defect present in the bearing. In addition, the results also reveal that there is no significant advantages in using the beta function parameters when compared to using kurtosis and the crest factor for detecting and identifying defects in rolling element bearings from both sound and vibration signals.

  • PDF

Study on frictional behavior of carbon nanotube with respect to potential function by molecular dynamics simulation (카본나노튜브의 포텐셜 함수에 따른 마찰거동에 대한 분자동역학 시뮬레이션 연구)

  • Kim, Hyun-Joon;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.36-41
    • /
    • 2013
  • Frictional behavior of a single carbon nanotube(CNT) was investigated using molecular dynamics simulation. A single CNT aligned horizontally on silver or graphene substrate was modeled to evaluate its frictional behavior such as frictional force and rolling/sliding motion with respect to potential parameter and lattice structure of the substrate. As a result, it was found that friction and rolling was affected by adhesion between two surfaces and period of the rolling depended on lattice distance of the substrate.

Effect of rolling parameters on soft-magnetic properties during hot rolling of Fe-based soft magnetic alloy powders (Fe계 연자성 합금 분말의 고온 압연시 자성특성에 미치는 압연인자들의 영향)

  • Kim, H.J.;H.Lee, J.;Lee, S.H.;Park, E.S.;Huh, M.Y.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.266-269
    • /
    • 2009
  • Iron-based soft magnetic materials are widely used as cores, such as transformer transformers, motors, and generators. Reducing losses generated from soft magnetic materials of these applications results in improving energy conversion efficiency. Recently, the new P/M soft magnetic material realized an energy loss of 68 W/kg with a drive magnetic flux of 1 T, at a frequency of 1 kHz, rivaling general-purpose electromagnetic steel sheet in the low frequency range of 200 Hz to 1 kHz. In this research, the effect of rolling parameters on soft magnetic properties of Fe-based powder cores was investigated. The Fe-based soft magnetic plates were produced by the hot powder rolling process after both pure Fe and Fe-4%Si powders were canned, evacuated, and sealed in Cu can. The soft magnetic properties such as energy loss and coercive power were measured by B-H curve analyzer. The soft magnetic properties of rolled sheets were measured under conditions of a magnetic flux density of 1 T at a frequency of 200 kHz. It was found that rolling reduction ratio is the most effective parameter on reducing both energy loss and coercivity because of increasing aspect ratio with reduction ratio. By increasing aspect ratio from 1 to 9 through hot rolling of pure Fe powder, a significant loss reduction of one-third that of SPS sample was achieved.

  • PDF

A method of background noise removal of Raman spectra for classification of liver disease (간 질병 분류를 위한 라만 스펙트럼의 배경 잡음 제거 방법)

  • Park, Aaron;Baek, Sung-June
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this paper, we investigated baseline estimation methods for remove background noise using Raman spectra from acute alcohol liver injury and acute ethanol-induced chronic liver fibrosis. Far the baseline estimation, we applied first derivative, linear programming and rolling ball method. Optimal input parameter of each method were determined by the training rate of MAP (maximum a posteriori probability) classifier. According to the experimental results, classification results baseline estimation with the rolling ball algorithm gave about 89.4%, which is very promising results for classification of acute alcohol liver injury and acute ethanol-induced chronic liver fibrosis. From these results, to determined the appropriate methods and parameters of baseline estimation impact on classification performance was confirmed.

  • PDF

Control Scheme Using Forward Slip for a Multi-stand Hot Strip Rolling Mill

  • Moon, Young-Hoon;Jo, I-Seok;Chester J. Van Tyne
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.972-978
    • /
    • 2004
  • Forward slip is an important parameter often used in rolling-speed control models for tandem hot strip rolling mills. In a hot strip mill, on-line measurement of strip speed is inherently very difficult. Therefore, for the set-up of the finishing mill, a forward slip model is used to calculate the strip speed from roll circumferential velocity at each mill stand. Due to its complexity, most previous researches have used semi-empirical methods in determining values for the forward slip. Although these investigations may be useful in process design and control, they do not have a theoretical basis. In the present study, a better forward slip model has been developed, which provides for a better set-up and more precise control of the mill. Factors such as neutral point, friction coefficient, width spread, shape of deformation zone in the roll bite are incorporated into the model. Implementation of the new forward slip model for the control of a 7-stand hot strip tandem rolling mill shows significant improvement in roll speed set-up accuracy.

Study on crystal texture of PIT processed Bi-2223 multi-filamentary tape (PIT 공정으로 제조한 Bi-2223 다심 고온 초전도 선재의 결정 배향성에 관한 연구)

  • Choi, J.K.;Oh, S.S.;Ha, H.S.;Yang, J.S.;Yun, J.K.;Lee, N.J.;Ha, D.W.;Kwan, Y.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.59-63
    • /
    • 2002
  • The purpose of this paper is to investigate the crystal texture of the 2223 phase and its relationship with PIT processing parameter. Ag-sheathed Bi-2223 multi-filament tapes were prepared by changing rolling reduction ratio. We analysed the degree of texture for 2223 phase after heat-treatment. According to X-ray pole-figure, the texture of the filaments located near surface and center were not so different each other for all rolling conditions. we found a little higher degree of texture for 60% rolling reduction. But its difference is not so high compared with those tapes with a lower rolling reduction ratio. Reaction induced texturing seemed to contribute with a large portion under present condition.

  • PDF

Textures Evolution of Rolled AA5182 Alloy Sheets after Annealing (알루미늄 5182 압연 판재의 어닐링 집합조직)

  • Kim Kee Joo;Shin Kwang Seon;Jeong Hyo-Tae;Paik Young-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.128-134
    • /
    • 2005
  • In order to fabricate the aluminum alloys with good drawability, the textures evolution of the AA5182 sheets after rolling and annealing was studied. The measurement of the deformation textures was carried out for the sheets which were cold rolled with high reduction ratio by using the symmetric roll. In addition, the change of the recrystallization texture was investigated after heat-treatments of the rolled sheets with various heat treatment conditions. Rolling without lubrication and subsequent annealing led to the formation of favorable $rot-C_{ND}\;\{001\}<110>\;and\;{\gamma}-fiber ND//<111>$ textures in AA5182 sheets. From the results, the ${\gamma}$-fiber ND//<111> component well evolved during rolling at highest reduction ratio (over $90\%$, l/d parameter of 6.77). Among shear deformation textures, the ${\gamma}$-fiber ND//<111> was not rotated in holding time of $180\~7,200$ seconds at $350^{\circ}C$. The Monte-Carlo technique was used and could be representatively simulated these textures evolution during recrystallization.