A method of background noise removal of Raman spectra for classification of liver disease

간 질병 분류를 위한 라만 스펙트럼의 배경 잡음 제거 방법

  • 박아론 (전남대학교 전자컴퓨터공학부) ;
  • 백성준 (전남대학교 전자컴퓨터공학부)
  • Received : 2012.11.29
  • Accepted : 2012.06.16
  • Published : 2013.06.30

Abstract

In this paper, we investigated baseline estimation methods for remove background noise using Raman spectra from acute alcohol liver injury and acute ethanol-induced chronic liver fibrosis. Far the baseline estimation, we applied first derivative, linear programming and rolling ball method. Optimal input parameter of each method were determined by the training rate of MAP (maximum a posteriori probability) classifier. According to the experimental results, classification results baseline estimation with the rolling ball algorithm gave about 89.4%, which is very promising results for classification of acute alcohol liver injury and acute ethanol-induced chronic liver fibrosis. From these results, to determined the appropriate methods and parameters of baseline estimation impact on classification performance was confirmed.

본 논문에서는 급성 알코올성 간 손상과 만성 에탄올성 간섬유증이 유도된 마우스로부터 획득한 라만 스펙트럼에서 배경 잡음을 제거하기 위한 기준선 추정 방법을 조사하였다. 기준선을 추정하기 위해 일차 미분, 선형계획법, rolling ball을 이용한 방법을 적용하였다. 각 방법의 적절한 압력 파라미터를 MAP(maximum a posteriori probability)의 훈련율에 의해 결정하였다. 실험 절과에 따르면 rolling ball 알고리즘을 이용한 기준선 추정 방법이 급성 알코올성 간 손상과 만성 에탄올성 간섬유증의 MAP 분류에서 평균 89.4%로 가장 좋은 결과를 나타냈다. 이 결과로부터 라만 스펙트럼의 기준선 추정에 적절한 방법과 파라미터를 결정하는 것이 분류 성능에 미치는 영향을 확인하였다.

Keywords