• Title/Summary/Keyword: Roll-to-Roll system

Search Result 904, Processing Time 0.022 seconds

Development of a Stability System to prevent a Capsize of a Small Fishing Vessel (소형어선의 전복방지화 안정장치 시스템 개발에 관한 연구)

  • Cheon, Seung-Hyeon;Jeon, Ho-Hwan;Kim, Chang-Hun;Kim, Si-Yeong;,
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.130-137
    • /
    • 1999
  • The wing-flap stabilizing system attached under the hull bottom of a small fishing vessel to prevent the capsize by controlling the roll motions has been developed. This paper describes the background of the system design together with the experimental results. The effectiveness of the system is proven by the towing tank tests with a 1/4 scale model, showing that the roll motions of the model are much reduced by the active flap control in multidirectional irregular waves forward speeds.

  • PDF

ROLL CENTER ANALYSIS OF A HALF-CAR MODEL USING POLE FOR SMALL DISPLACEMENT

  • Lee, J.K.;Shim, J.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.833-839
    • /
    • 2006
  • In this paper, roll behavior of three planar half car models are compared. The first model is a simple model whose contact point between a wheel and the ground is assumed to be fixed with a revolute joint. The second model is a modified model of the fIrst model, whose wheel tread width can vary. In this model, the instant center of a wheel with respect to the ground, which is crucial to find the roll center, is assumed to be at the contact point of a wheel and the ground. The last model uses the pole of a wheel with respect to the ground for small displacement as the instant center of a wheel with respect to the ground. Loci of the center of gravity point, the fixed and the moving centrodes which are traces of roll center position in the ground and the body frame respectively, wheel contact points, and instant centers of a wheel with respect to the ground are calculated.

Improving the Roll Stability of a Vehicle by H$_{\infty}$ Control (선회 조향시 강건 제어에 의한 롤 안정성 개선)

  • 김효준;양현석;박영필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.92-99
    • /
    • 2001
  • This paper presents a simulation study using a robust controller to improve the roll stability of a vehicle. The controller is designed in the framework of an output feedback H$_{\infty}$ control scheme based on the 3DOF linear vehicle model, solving the mixed-sensitivity problem to guarantee the robust stability and disturbance rejection with respect to parameter variations due to laden and running vehicle conditions. In order to investigate the feasibility of the active roll control system in a real car, its performance is evaluated by simulation in a 10DOF full vehicle model with actuator dynamics and tire characteristics.

  • PDF

KOREASAT On-Orbit Normal Mode Attitude Control System (무궁화위성의 정상운용모드에서의 자세제어 시스팀)

  • 김동환;원종남;김성중;강성수;김한돌;이명수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.505-514
    • /
    • 1994
  • Koreasat spacecraft requires accurate and reliable attitude control to provide beam pointing for tenyear long communication and direction broadcasting services. This paper describes the detailed design and performance of an on-orbit normal mode attitude control subsystem for the spacecraft. Koreasat used a momentum wheel which has nominal momentum 475in-1b sec(547.6cm-kg sec) aligned with the pitch axis to control pitch attitude and provide gyroscopic stiffness in roll/yaw plane and used a 300 atm magnetic torquer to control the roll and yaw attitudes. An Earth Sensor Assembly (ESA) is used to provide pitch and roll information for the on-board micropocessor. The roll/yaw control used bang-off-bang control and while pitch axis control used proportional and integral control law. Control system errors during the operational normal mode are 0.03 deg, 0.1 deg and 0.01 deg in roll, yaw and pitch axes, respectively. Current attitude control system provides adequate control performances to capture initial attitude errors and spacecraft nutation.

  • PDF

Aerodynamic Characteristics of a Variable-Span Wing Flying Inside a Channel II (Effect of Asymmetric Wing Extensions) (채널 내를 비행하는 가변스팬 날개 공력특성 II (비대칭 날개 펼침))

  • Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.39-43
    • /
    • 2016
  • In this paper, a wind-tunnel test is accomplished to investigate the roll characteristics of a variable-span wing flying inside a channel. The factors that affect the roll characteristics of the wing were identified by analyzing the measured data; accordingly, when the wing is flying without both the ground and sidewall effects, the asymmetric wing extension causes the roll moment. Both the ground and the sidewall can increase the roll moment, but when the wing is affected by both the ground and the sidewall, the roll moment does not increase as much as the case where the wing is only affected by the ground. Also, the aerodynamic characteristics of the flying wing inside a channel are the nonlinear function of the wing height and the gap between the wingtip and the sidewall, both of which should be considered in a study of the stability and the flight control of the wing-in-ground effect of the vehicle flying inside a channel.

Development of a Roll-Forming Process of Linearly Variable Symmetric Hat-type Cross-section (좌우 대칭 모자형 단면이 길이 방향으로 선형적으로 변하는 롤 포밍 공정의 개발)

  • Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.118-125
    • /
    • 2015
  • The roll-forming process is a highly productive incremental forming process and is suitable for manufacturing thin, high-strength steel products. Recently, this process has been considered one of the most productive processes in manufacturing high-strength steel automotive structural parts. However, it is very difficult to develop the roll-forming process when the cross-sectional shape of the product changes in the longitudinal direction. In this study, a roll-forming process for manufacturing high-strength steel automotive parts with a linearly variable symmetric hat-type cross-section was developed. The forming rolls were designed by the 3D CAD system, CATIA. Additionally, the designed forming rolls were modified by the simulation through the 3D elastic-plastic finite element analysis software, MARC. The results of the finite element analysis show that the final roll-forming roll can successfully produce the desired high-strength steel automotive part with a variable cross-section.

Rotary Forming Equipment for Precision Joining of the Ball and the Socket (볼과 소켓의 정밀 체결을 위한 회전성형 장치)

  • Jun, B.Y.;Eom, J.G.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.132-137
    • /
    • 2007
  • A double roll rotary forming equipment is presented in this paper. The equipment is developed for joining the socket with the ball of a concave piston assembly with its geometrical tolerance requirements satisfied. The equipment is composed of a lathe, a double roll system and a roll pressing unit driven by the hydraulic system. The workpiece rotates by spindle chuck of the lathe while the double roll system approaches perpendicularly to the central line of the workpiece. The equipment is successfully applied to precision joining of the ball and the socket fur the concave piston assembly of a high pressure hydraulic pump.

Stability Analysis of the Tension Control System of a High-speed Roll-to-Roll Printing Machine (고속 롤투롤 인쇄기의 장력제어시스템 안정도 해석)

  • Kang, Chul-Goo;Lee, Bong-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.873-878
    • /
    • 2007
  • Stability of high-speed roll-to-roll printing machines is one of the most important factors that are required for the printing machines to operate properly and to obtain reasonable printing performance. This paper proposes a new model for the web-tension system of a high-speed gravure printing machine considering span-length variations due to dancer rollers, and analyzes the stability of plant dynamics of the printing machine using the proposed model. Span-length variations due to dancer motions are considered for the modeling of plant dynamics in two ways; one is to include the effect of span-length variations without considering dancer inertias and viscous frictions, and the other is to include the effect of span-length variations with considering dancer inertias and viscous frictions. The stability of the plant model is analyzed for various web-speeds using the eigenvalues of the linearized model about operating points.

  • PDF

Evaluation of Spray Flight Attitude for Agricultural Roll-balanced Helicopter using Kalman Filter (칼만필터를 이용한 농용 균평헬리콥터의 살포비행자세 평가)

  • Park, Hee Jin;Koo, Young Mo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.342-351
    • /
    • 2012
  • Purpose: Aerial spraying with an agricultural unmanned helicopter became a new paradigm in the agricultural practice. Laterally tilting behavior of a conventional agricultural helicopter, resulting in the biased down-wash and uneven spray deposit is a physically intrinsic phenomenon while hovering and cruise flights. Authors studied and developed a roll-balanced agricultural helicopter with a raised pylon tail rotor system. In this study, the attitude of the roll-balanced helicopter was determined using the Kalman filter algorithm, and the quality of roll balancing of a bare-airframe helicopter was evaluated. Methods: Instantaneous attitudes were estimated using the advantage of gyroscope, followed by the long term correction and prediction using accelerometer data for the advantage of convergence. The attitudes of the fuselage were calculated by applying the Kalman filter algorithm. The spraying maneuver of the helicopter was performed at a field of 50 m long, and the attitude data were acquired and evaluated. Results: The determination of attitude using the inertial measurement unit(IMU) and Kalman filter was reliable and practical. The intrinsic attitude of the developed helicopter was stable and roll-balanced. The deviation of roll angle was ${\pm}6.3^{\circ}$ with an average of $0^{\circ}$, referring to roll-balanced. Conclusions: Handling quality of the roll attitude determined to be steadily balanced. The balancing behavior of the developed helicopter would result in an even spray pattern during aerial application.

Statistical Analysis for Thickness and Surface Roughness of Printed Pattern in Roll-to-Roll Printed Electronics System (롤투롤 인쇄전자 시스템에서 인쇄패턴의 두께와 표면조도에 관한 통계적 분석)

  • Lee, Chang Woo;Kim, Nam Seok;Kim, Chang Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.287-294
    • /
    • 2013
  • The roll-to-roll (R2R) printed electronics system is one of the most promising technologies for the printed electronics industry because of several advantages in terms of productivity and cost. In the R2R printed electronics system, the characteristics of the printed patterns are an important issue that determines the functional quality of the printed matter. This study analyzed how several main factors may affect the characteristics of printed patterns, especially the thickness and surface roughness. The statistical model for estimation of the printed pattern was developed as a function of the main factors using the design of experiment (DOE) methodology. Based on the statistical analysis results, the R2R printed electronics system can be designed to control the characteristics of printed patterns.