• Title/Summary/Keyword: Roll Power

Search Result 210, Processing Time 0.023 seconds

Performance Prediction on the Seakeeping Characteristics of a Catamaran Power Yacht (카타마란형 파워요트의 내항성능 추정에 관한 연구)

  • Shon, Chang-Bae;Oh, Woo-Jun;Ku, Youn-Kyoung;Gim, Ok-Sok;Lee, Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.385-386
    • /
    • 2010
  • The ship's seakeeping performance in the pitching and roll motion was felt tired. These gives structural loads to loaded with cargo and hull facilities. Be to improve, small catamaran power yacht designed a data for ship research and ship's hull form to be decided. In this study, based on domestic release for coastal marine environment in the interpretation criteria were chosen based on the exercise performance. The seakeeping performance of marine leisure catamaran was based on voyage speed. The seakeeping performance estimates based on the encounter angle, the wave of the encounter frequency response amplitude ratio for exercise was assessed in the high performance area.

  • PDF

Link Margin Analysis on Telemetry for KSLV-I Launch (KSLV-1 발사를 위한 원격측정신호 Link Margin 분석)

  • Oh, Chang-Yul;Lee, Sung-Hee;Kim, Dong-Hyun;Kwon, Sun-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.105-112
    • /
    • 2009
  • Telemetry data is very important for the Launch Mission and Flight Safety Control during the Space Launch. In Naro Space Center, several telemetry stations such as a small station in the NARO space center, two stations in Jeju and a downrange station on a ship are deployed for the stable acquisition/receiving of the telemetry signals. In this paper, the Link Margin and Reliability for the telemetry are analyzed to evaluate the probability of the signal receiving of each station. Even though the proper analysis is to using the on-board EIRP(Effective Isotropic Radiation Power) values in the direction of the ground station considering the predicted flight trajectory and the locations of the stations, the global EIRP of 95% spatial coverage has been used for the analysis, due to the limitation of the available data.

  • PDF

Effect of Center Pin in Free Fall Test for a Cylindrical Li-ion Cell (원형 리튬 전지의 센터 핀이 낙하 충격에 미치는 영향)

  • Kim, Simon;Lee, Young Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.639-644
    • /
    • 2015
  • A cylindrical secondary Li-ion cell is a device in which stored chemical energy is converted to electrical energy via an electrochemical reaction. These cells are widely used for applications that require high capacity and rate power, such as notebooks, power tools, and electric vehicles. The role of a center pin is to retain the channel for gas release, preventing blockage of the hollow of the jelly roll during a charge-discharge cycle, and to prevent an internal short circuit for tearing of separator under mechanical free fall. In this paper, two experiments are conducted with and without the center pin to experimentally verify the importance of the role of the center pin. The first experiment is a 50-cycle charge-discharge cycle test, and the second is a free fall test conducted according to the Underwriters Laboratories (UL) standards. Based on these experiments, we demonstrate that the center pin in a cylindrical cell is a very important component in terms of safety.

Comparison of Test Standards for the Performance and Safety of Agricultural Tractors: A Review

  • Kabir, Md. Shaha Nur;Chung, Sun-Ok;Kim, Yong-Joo;Shin, Sung-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.158-165
    • /
    • 2014
  • Purpose: The objective of this paper was to compare test standards regarding the performance and safety of agricultural tractors to identify the differences in test conditions, measurement tolerances, and test procedures. Based on the comparison, some recommendations were proposed for possible revisions or improvements to current tractor test standards. Methods: The test standards and codes of major standards development organizations (SDOs), such as the Organization for Economic Cooperation and Development (OECD), the International Organization for Standardization (ISO), the American Society of Agricultural and Biological Engineers (ASABE), EC type approval, and the board of actions of the Nebraska Tractor Test Laboratories (NTTL), were selected and analyzed. Comparison of the test standards: The ISO provides references for fuel and lubricants for tractor tests, and the OECD provides additional measurements for calculating fuel consumption characteristics during the power take-off (PTO) tests. The ISO, EC type approval, and the ASABE provide PTO protective device and the safety requirements. During drawbar power tests, seven transmission ratios are selected for fully automatic transmissions, according to the OECD. In case of hydraulic lift tests, ISO 789-2 and OECD Code 2 advise the use of a static lift force, while SAE J283 advises the use of additional dynamic lift capacity tests for a better representation of in-field operations. The OECD, the ISO, and EC type approval determine the seat index point (SIP), whereas the ASABE determines the seat reference point (SRP) for roll-over protective structure (ROPS) tests. Diversified measurement tolerances were among the braking performance test standards. The European Union (EU) has developed daily limits for vibration exposures with adaptations from ISO 2631-1. Electromagnetic compatibility evaluations are emerging of high-efficiency tractors due to the long-term conformance to electromagnetic emissions and interferences. Comparisons of tractor test standards discussed in this paper are expected to provide useful information for tractor manufacturers and standards development personnel to improve the performance and safety test standards of tractors.

Research Trends for Performance, Safety, and Comfort Evaluation of Agricultural Tractors: A Review

  • Kabir, Md. Shaha Nur;Ryu, Myong-Jin;Chung, Sun-Ok;Kim, Yong-Joo;Choi, Chang-Hyun;Hong, Soon-Jung;Sung, Je-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • Background: Significant technological development and changes happened in the tractor industries. Contrariwise, the test procedures of the major standard development organizations (SDO's) remained unchanged or with a little modification over the years, demanding new tractor test standards or improvement of existing ones for tractor performance, safety, and comfort. Purpose: This study focuses on reviewing the research trends regarding performance, safety and comfort evaluation of agricultural tractors. Based on this review, few recommendations were proposed to revise or improve the current test standards. Review: Tractor power take-off power test using the DC electric dynamometer reduced human error in the testing process and increased the accuracy of the test results. GPS signals were used to determine acceleration and converted into torque. High capacity double extended octagonal ring dynamometer has been designed to measure drawbar forces. Numerical optimization methodology has been used to design three-point hitch. Numerous technologies, driving strategies, and transmission characteristics are being considered for reducing emissions of gaseous and particulate pollutants. Engine emission control technology standards need to be revised to meet the exhaust regulations for agricultural tractors. Finite Element Analysis (FEA) program has been used to design Roll-Over Protective Structures (ROPS). Program and methodology has been presented for testing tractor brake systems. Whole-body vibration emission levels have been found to be very dependent upon the nature of field operation performed, and the test track techniques required development/adaptation to improve their suitability during standardized assessment. Emphasizes should be given to improve visibility and thermal environment inside the cab for tractor operator. Tractors need to be evaluated under electromagnetic compatibility test conditions due to large growing of electronic devices. Research trends reviewed in this paper can be considered for possible revision or improvement of tractor performance, safety, and comfort test standards.

The Effect of Clipping on the Spectrum and BER of IFDMA Signal with Pulse Shaping (파형정형된 IFDMA 신호에서 클리핑이 스펙트럼과 BER에 미치는 영향)

  • Park, Seung-Yong;Kim, Jeong-Goo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1106-1112
    • /
    • 2009
  • The SC-FDMA(single carrier-frequency division multiple access) was recently adopted as the uplink multiple access scheme from 3GPP LTE(3rd Generation Partnership Project Long Tenn Evolution) due to its low PAPR (Peak-to-averaged power ratio). The bandwidth of IFDMA(interleaved FDMA), one of the sub-carrier mapping methods of SC-FDMA, gets narrower as the roll-off factor of RRC(root raised cosine) filter decreases from 1 to 0, whereas its PAPR can increase significantly. In practice, to increase the power efficiency of an amplifier, signals with high PAPR undergo the process of clipping. Clipping of signals may cause regeneration of high-frequency components as well as distortion of signals. The current paper deals with the effect of clipping on the spectrum and BER of IFDMA signals with RRC filters.

A Study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting (실시간 기상 정보를 이용한 최적 항로 안전 평가 시스템의 연구)

  • Choi, Kyong-Soon;Park, Myung-Kyu;Lee, Jin-Ho;Park, Gun-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.133-140
    • /
    • 2007
  • Since early times, captain have been sailing to select the optimum route considering the weather, ship loading status condition and operational scheduling empirically. However, it is rare to find digitalized onboard route support system whereas weather facsimile or wave and swell chart are utilized for the officer, based on captain's experience. In this paper, optimal route safety assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimizea ETA(estimated time of arrival) and fuel consumption that shipping company and captain are requiring to evaluate for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method. Finally, It is assistance measure for ship's optimum navigation route safety planning & assessment.

  • PDF

Laser Cladding with Al-36%Si Powder Paste on A319 Al Alloy Surface to Improve Wear Resistance (A319 알루미늄 합금 표면에 Al-36%Si 합금분말의 레이저 클래딩에 의한 내마모성 향상)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.58-62
    • /
    • 2017
  • A319 aluminum alloy containing 6.5% Si and 3.5% Cu as major alloying elements has been widely used in machinery parts because of its excellent castability and crack resistance. However it needs more wear resistance to extend its usage to the severe wear environments. It has been known that hyper-eutectic Al-Si alloy having more than 12.6% Si contains pro-eutectic Si particles, which give better wear resistance and lubrication characteristics than hypo-eutectic Al-Si alloy like A319 alloy. In this study, it was tried to clad hyper-eutectic Al-Si alloy on the surface of A319 alloy. In the experiments, Al-36%Si alloy powder was mixed with organic binder to make a fluidic paste. The paste was screen-printed on the A319 alloy surface, melted by pulsed Nd:YAG laser and alloyed with the A319 base alloy. As experimental parameters, the average laser power was changed to 111 W, 202 W and 280 W. With increasing the average laser power, the melting depth was changed to $142{\mu}m$, $205{\mu}m$ and $245{\mu}m$, and the dilution rate to 67.2 %, 72.4 % and 75.7 %, and the Si content in the cladding layer to 16.2 %, 14.6 % and 13.7 %, respectively. The cross-section of the cladding layer showed very fine eutectic microstructure even though it was hyper-eutectic Al-Si alloy. This seems to be due to the rapid solidification of the melted spot by single laser pulse. The average hardness for the three cladding layers was HV175, which was much higher than HV96 of A319 base alloy. From the block-on-roll wear tests, A319 alloy had a wear loss of 5.8 mg, but the three cladding layers had an average wear loss of 3.5 mg, which meant that an increase of 40 % in wear resistance was obtained by laser cladding.

Measurement of inconvenience, human errors, and mental workload of simulated nuclear power plant control operations

  • Oh, I.S.;Sim, B.S.;Lee, H.C.;Lee, D.H.
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.47-55
    • /
    • 1996
  • This study developed a comprehensive and easily applicable nuclear reactor control system evaluation method using reactor operators behavioral and mental workload database. A proposed control panel design cycle consists of the 5 steps: (1) finding out inconvenient, erroneous, and mentally stressful factors for the proposed design through evaluative experiments, (2) drafting improved design alternatives considering detective factors found out in the step (1), (3) comparative experiements for the design alternatives, (4) selecting a best design alternative, (5) returning to the step (1) and repeating the design cycle. Reactor operators behavioral and mental workload database collected from evaluative experiments in the step (1) and comparative experiments in the step (3) of the design cycle have a key roll in finding out defective factors and yielding the criteria for selection of the proposed reactor control systems. The behavioral database was designed to include the major informations about reactor operators' control behaviors: beginning time of operations, involved displays, classification of observational behaviors, dehaviors, decisions, involved control devices, classification of control behaviors, communications, emotional status, opinions for man-machine interface, and system event log. The database for mental workload scored from various physiological variables-EEG, EOG, ECG, and respir- ation pattern-was developed to indicate the most stressful situation during reactor control operations and to give hints for defective design factors. An experimental test for the evaluation method applied to the Compact Nuclear Simulator (CNS) installed in Korea Atomic Energy Research Institute (KAERI) suggested that some defective design factors of analog indicators should be improved and that automatization of power control to a target level would give relaxation to the subject operators in stressful situation.

  • PDF

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.