Browse > Article
http://dx.doi.org/10.3795/KSME-A.2015.39.6.639

Effect of Center Pin in Free Fall Test for a Cylindrical Li-ion Cell  

Kim, Simon (Department of Mechanical Design Engineering, Chungnam National University)
Lee, Young Shin (Department of Mechanical Design Engineering, Chungnam National University)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.39, no.6, 2015 , pp. 639-644 More about this Journal
Abstract
A cylindrical secondary Li-ion cell is a device in which stored chemical energy is converted to electrical energy via an electrochemical reaction. These cells are widely used for applications that require high capacity and rate power, such as notebooks, power tools, and electric vehicles. The role of a center pin is to retain the channel for gas release, preventing blockage of the hollow of the jelly roll during a charge-discharge cycle, and to prevent an internal short circuit for tearing of separator under mechanical free fall. In this paper, two experiments are conducted with and without the center pin to experimentally verify the importance of the role of the center pin. The first experiment is a 50-cycle charge-discharge cycle test, and the second is a free fall test conducted according to the Underwriters Laboratories (UL) standards. Based on these experiments, we demonstrate that the center pin in a cylindrical cell is a very important component in terms of safety.
Keywords
Cylindrical Li-ion Cell; Center Pin; Free Fall; Cycled Cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schalkwijk, W. A. and Scrosati, B., 2002, "Advances in Lithium-ion Batteries," Kluwer Academic and Plenum Publishers, New York, pp. 79-249.
2 Linden, D. and Reddy, T.B., 2002, "Handbook of Batteries I," McGraw-Hill Companies Inc..
3 Linden, D. and Reddy, T.B., 2002, "Handbook of Batteries II," McGraw-Hill Companies Inc..
4 Kim, S. and Lee, Y.S., 2010, "Effect of Center Pin on a Cylindrical Type Li-ion Secondary Battery by Free Fall," Proceeding of Spring Conference of the Korean Society of Mechanical Engineers, pp. 245 - 250.
5 UL 1642, 2007, "UL Standard for Safety for Lithium Batteries (August 9)," Fourth Edition, Underwriters Laboratories Inc., IL, pp. 16 -17.
6 Arora, P. and White, R. E., 1998, "Capacity Fade Mechanisms and Side Reactions in Lithium-ion Batteries," Journal of Electrochemical Society, Vol. 145, No. 10, pp. 3647-3667.   DOI   ScienceOn
7 Ramadass, P., Haran, B., Gomadam, P. M., White, R. and Popov, B. N., 2004, "Development of First Principles Capacity Fade Model for Li-ion Cells," Journal of Electrochemical Society, Vol. 151, No. 2, pp. A196-A203.   DOI   ScienceOn
8 Kim, S., Lee, Y.S., Lee, H.S. and Jin, H.L., 2010, "A Study on the Behavior of a Cylindrical Type Li-ion Secondary Battery Under Abnormal Conditions," Materials Science and Engineering Technology, Vol.41, No.5, pp.378-385.
9 Lee, H.W. and Park, I.S., 2013, "Thermal Analysis of Lithium-ion Cell Using Equivalent Properties and Lumped Capacitance Method," Trans. Korean Soc. Mech. Eng. B, Vol.37, No.8, pp.775-780.   DOI
10 Doughty, D. H., Butler, P. C., Jungst, R. G. and Roth, E. P., 2002, "Lithium Battery Thermal Models," Journal of Power Sources, Vol. 110, pp. 357-363.   DOI   ScienceOn
11 Kim, G., Pesaran, A. and Spotnitz, R., 2007, "A Three-dimensional Thermal Abuse Model for Lithiumion Cells," Journal of Power Sources, Vol. 170, pp. 476-489.   DOI   ScienceOn