• Title/Summary/Keyword: Rocking

Search Result 335, Processing Time 0.028 seconds

Growth of Large Area BSTO Thin Films using Pulsed Laser Deposition (펄스레이저 증착법을 이용한 대면적 BSTO 박막의 성장)

  • Kang, Dae-Won;Kwak, Min-Hwan;Kang, Seong-Beom;Paek, Mun-Cheol;Choi, Sang-Kuk;Kim, Sung-Il;Ryu, Han-Cheol;Kim, Ji-Seon;Jeong, Se-Young;Chung, Dong-Chul;Kang, Kwang-Yong;Lee, Beong-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.249-249
    • /
    • 2009
  • We have grown large area BSTO($(Ba_{1-x}Sr_x)TiO_3$) thin films (x=0.4) on 2 inch diameter MgO (001) single crystal substrates using a pulse laser deposition(PLD) system. Substrate temperature and oxygen pressure in the deposition chamber, and the laser optics for ablating a target have been controlled to obtain the uniform thickness and preferred orientation of the films. Results of x-ray diffraction and rocking curve analysis revealed that the BSTO films were grown on MgO substrates with a preferred orientation (002), and the full width half maximum of the rocking curve was measured to be 0.86 degree at optimum condition. Roughness of the films have been measured to be $3.42{\AA}$ rms by using atomic force microscopy. We have successfully deposited the large area BSTO thin films of $4000{\AA}$ thickness on 50 mm diameter MgO substrates.

  • PDF

Effects of the V/III ratio on a-plane GaN epitaxial layer on r-plane sapphire grown by HVPE (r-Plane sapphire 위에 HVPE에 의해 성장한 a-plane GaN에피텍셜층의 V/III족 ratio에 따른 특성 변화)

  • Ha, Ju-Hyung;Park, Mi-Seon;Lee, Won-Jae;Choi, Young-Jun;Lee, Hae-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.89-93
    • /
    • 2014
  • In this study, effects of the V/III ratio on a-plane GaN epitaxial on r-plane grown by HVPE have been investigated. According to increasing of V/III ratio, the value of FWHM of a-plane (11-20) GaN and the value of surface roughness (Ra) were decreased. Growth rate of a-plane GaN epitaxial layer were increased until V/III ratio = 7 as the increasing of V/III ratio, but it was reduced at V/III ratio = 10. At V/III ratio = 10, the FWHM of a-plane (11-20) GaN RC and the surface roughness (Ra) were 829 arcsec and 1.58 nm, respectively, as the lowest value in this study. Also for V/III ratio = 10, cracks under surface or voids were observed the lowest values in images of optical microscope. An M-shaped azimuthal dependence over $360^{\circ}$ angle range was observed for all samples. At V/III ratio = 10, the difference of FWHM of a-plane GaN between $0^{\circ}$ and $90^{\circ}$ was 439 arcsec revealed as the lowest value in the 4 samples.

A study on the growth and characteristics of $AgGaS_2$ single crystal thin film by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$단결정 박막성장과 특성에 관한 연구)

  • 홍광준;정준우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.211-220
    • /
    • 1998
  • The stochiometric composition of $AgGaS_2$polycrystal source materials for the single crystal thin films were prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns, it was found that the polycrystal $AgGaS_2$has tetragonal structure of which lattice constant $a_0\;and \;c_0$ were 5.756 $\AA$ and 10.305 $\AA$, respectively. $AgGaS_2$single crystal thin film was deposited on throughly etched GaAs(100) substrate from mixed crystal $AgGaS_2$by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5 $mu \textrm{m}$/h. The crystallinity of the grown single crystal thin films was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2$single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by${\Alpha};=;8.695{\times}10^{-4};eV/K,and;{\beta};=;332;K$. from the photocurrent spectra by illumination of polarized light of the $AgGaS_2$single crystal thin film, we have found that crystal field splitting $\Delta$Cr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

Wet chemical etching of molten KOH/NaOH eutectic alloy to evaluate AlN single crystal (AlN 단결정의 품질평가를 위한 molten KOH/NaOH eutectic alloy의 화학적 습식에칭)

  • Park, Cheol Woo;Park, Jae Hwa;Hong, Yoon Pyo;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.237-241
    • /
    • 2014
  • We investigated the optimal etching conditions and properties of the surface change due to molten KOH/NaOH chemical wet etching using an AlN wafer which has been put to practical use in the present study. Results were observed using a scanning electron microscope after 5 minutes etching at $350^{\circ}C$, was found to have a surface form of the respective other Al-face, the N-face. In particular, etch-pit in the form of a hexagon, which is observed in the Al-face appeared, It was calculated at $2{\times}10^6/cm^2{\sim}10^{10}/cm^2$ dislocation density. In the case of N-face, lattice defects in the form of the hexagonal pyramids is formed. It was discovered that in order to observe the orientation of the wafer, which corresponds to the C-axis direction of the resulting hexagonal AlN which was analyzed using XRD (0002) and is a state of being oriented in the (0004) plane. The Radius of curvature of AlN wafer was 1.6~17 m measured by DC-XRD rocking curve position.

The Low-field Tunnel-type Magnetoresistance Characteristics of Thin Films Deposited on Different Substrate (기판 효과에 따른 저 자장 영역에서의 자기저항 효과에 관한 연구)

  • Lee, Hi-Min;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.41-45
    • /
    • 2002
  • The low-field tunnel-type magnetoresistance (MR) properties of sol-gel derived $La_{0.7}Pb_{0.3}MnO_3(LPMO)$ thin film deposited on different substrate have been investigated. Polycrystalline thin films were fabricated by spin-coating on $SiO_2/Si(100)$ substrate and that with yttria-stabilized zirconia (YSZ) buffer layer, while c-axis-oriented thim film was grown on $LaAlO_3(001)$ (LAO) single crystal substrate. The full width half maximum (FWHM) of the rocking curve scan of LPMO/LAO film is $0.32^{\circ}$. Tunnel-type MR ratio is 0.52 % in $LPMO/SiO_2/Si$(100) film and that of $LPMO/YSZ/SiO_2/Si$(100) film is as high as 0.68 %, whereas that of LPMO/LAO(001) film is less than 0.4 % under the applied field of 500 Oe at 300 K. Well-pronounced MR hysteresis was registered with an MR peak in the vicinity of the coercive field. The low-field tunnel-type MR characteristics of thin films deposited on different substrates originates from the behavior of grain boundary properties.

The effects of growth temperatures and V/III ratios at 1000℃ for a-plane GaN epi-layer on r-plane sapphire grown by HVPE (r면 사파이어 위에 HVPE로 성장된 a면 GaN 에피층의 성장온도 효과 및 1000℃에서의 V/III족 비의 효과)

  • Ha, Ju-Hyung;Park, Mi-Seon;Lee, Won-Jae;Choi, Young-Jun;Lee, Hae-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.56-61
    • /
    • 2015
  • The effects of the growth temperature on the properties of a-plane GaN epi-layer on r-plane sapphire by HVPE were studied, when the constant V/III ratio and the flow rate of HCl for the Ga source channel was fixed at 10 and 700 sccm, respectively. Additionally the effects of V/III ratios for source gasses were studied when growth temperature and the flow rate of HCl for the Ga source channel was fixed at $1000^{\circ}C$ and 700 sccm, respectively. As the growth temperature was increased, the values of Full Width Half Maximum (FWHM) for Rocking curve (RC) of a-plane GaN (11-20) epi-layer were decreased and thickness of a-plane GaN epi-layer were increased. As V/III ratios were increased at $1000^{\circ}C$, the values of FWHM for RC of a-plane GaN (11-20) were declined and thickness of a-plane GaN epi-layer were increased. The a-plane GaN (11-20) epi-layer grown at $1000^{\circ}C$ and V/III ratio = 10 showed the lowest value FWHM for RC of a-plane GaN (11-20) for 734 arcsec and the smallest dependence of Azimuth angle for FWHM of (11-20) RCs.

a-Si:H TFT Using Ferroelectrics as a Gate Insulator (강유전체를 게이트 절연층으로 한 수소화 된 비정질실리콘 박막 트랜지스터)

  • 허창우;윤호군;류광렬
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • The a-Si:H TFTs using ferroelectric of SrTiO$_3$, as a gate insulator is fabricated on glass. Dielectric characteristics of ferroelectric is better than SiO$_2$, SiN. Ferroelectric increases ON-current, decreases threshold voltage of TFT and also breakdown characteristics. The a-Si:H deposited by PECVD shows absorption band peaks at wavenumber 2,000 $cm^{-1}$ /, 635 $cm^{-1}$ / and 876 $cm^{-1}$ / according to FTIR measurement. Wavenumber 2,000 $cm^{-1}$ /, 635 $cm^{-1}$ / are caused by stretching and rocking mode SiH1. The wavenumber of weaker band, 876 $cm^{-1}$ / is due to SiH$_2$ vibration mode. The a-SiN:H has optical bandgap of 2.61 eV, refractive index of 1.8 - 2.0 and resistivity of 10$^{11}$ - 10$^{15}$ aim respectively. Insulating characteristics of ferroelectric is excellent because dielectric constant of ferroelectric is about 60 - 100 and breakdown strength is over 1 MV/cm. TFT using ferroelectric has channel length of 8 - 20 $\mu$m and channel width of 80 - 200 $\mu$m. And it shows drain current of 3 $\mu$A at 20 gate voltages, Ion/Ioff ratio of 10$^{5}$ - 10$^{6}$ and Vth of 4 - 5 volts.

  • PDF

Multi-step growth of a-plane GaN epitaxial layer on r-plane sapphire substrate by HVPE method (HVPE를 이용하여 r-plane 사파이어 위에 multi-step으로 성장시킨 a-plane GaN 에피층의 특성 연구)

  • Lee, Won-Jun;Park, Mi-Seon;Jang, Yeon-Suk;Lee, Won-Jae;Ha, Ju-Hyung;Choi, Young-Jun;Lee, Hae-Yong;Kim, Hong-Seung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.89-94
    • /
    • 2016
  • In this study, the crystalline property of a-plane GaN epitaxial layer grown on r-plane sapphire by a HVPE method has been investigated according to the V/III ratio and the growth time of multi-step growth. Furthermore, these results were compared with the previous result obtained from the single-step growth of a-plane GaN on r-plane sapphire substrate. In the multi-step growth for a-plane GaN epitaxial layer on r-plane sapphire, the FWHM values of rocking curve in GaN epitaxial layer were decreased as the HCl source flow rate and the growth time were increased. The void formed in epitaxial layer was continuously decreased as the growth time in first step and second step using a higher HCl flow rate was increased. As a result, the GaN layer obtained with the longest growth time on the first step and second step exhibited the lowest FWHM values of 584 arcsec and the smallest dependence of azimuth angle.

Fabrication and characterization of GaN substrate by HVPE (HVPE법으로 성장시킨 GaN substrate 제작과 특성 평가)

  • Oh, Dong-Keun;Choi, Bong-Geun;Bang, Sin-Young;Eun, Jong-Won;Chung, Jun-Ho;Lee, Seong-Kuk;Chung, Jin-Hyun;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.164-167
    • /
    • 2010
  • Bulk GaN single crystal with 1.5 mm thickness was successfully grown by hydride vapor phase epitaxy (HVPE) technique. Free-standing GaN substrates of $10{\times}10,\;15{\times}15$ mm size were fabricate after lift-off of sapphire substrate and their optical properties were characterized properties for device applications. X-ray diffraction patterns showed (002) and (004) peak, and the FWHM of the X-ray rocking curve (XRC) measurement in (002) was 98 arcsec. A sharp photoluminescence spectrum at 363 nm was observed and defect spectrum at visible range was not detected. The hexagonal-shaped etch-pits are formed on the GaN surface in $200^{\circ}C\;H_3PO_4$ at 5 minutes. The defect density calculated from observed etch-pits on surface was around $5{\times}10^6/cm^2$. This indicates that the fabricated GaN substrates can be used for applications in the field of optodevice, and high power electronics.

Study of characteristics of $AgGaS_2$/GaAs epilayer by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$/GaAs epilayer 성장과 특성)

  • Hong, K.J.;Jeong, J.W.;Bang, J.J.;Jin, Y.M.;Kim, S.H.;Yoe, H.S.;Yang, H.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.84-91
    • /
    • 2002
  • The stochiometric composition of $AgGaS_2$/GaAs polycrystal source materials for the $AgGaS_2$/GaAs epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal $AgGaS_2$/GaAs has tetragonal structure of which lattice constant an and Co were 5.756 $\AA$ and 10.305 $\AA$, respectively. $AgGaS_2$/GaAs epilayer was deposited on throughly etched GaAs(100) substrate from mixed crystal $AgGaS_2$/GaAs by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively. The crystallinity of the grown $AgGaS_2$/GaAs epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2$/GaAs epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by $\alpha=8.695{\times}10^{-4}$ eV/K, and $\beta=332K$. From the photocurrent spectra by illumination of polarized light of the $AgGaS_2$/GaAs epilayer, we have found that crystal field splitting ${\Delta}Cr$ was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF