• Title/Summary/Keyword: Rockfill zone

Search Result 32, Processing Time 0.023 seconds

Evaluation of the Shear Wave Velocity Profile of Rockfill Zone of CFRD Using HWAW Method (국내 콘크리트 표면차수벽형 석괴댐(CFRD) 사력존의 전단파 속도 분포 결정(I): HWAW 방법을 사용한 CFRD 사력존 전단파 속도 주상도 결정)

  • Hwang, Hea-Jin;Park, Yun-Seok;Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.5-15
    • /
    • 2014
  • Rockfill zone is a main part of the CFRD for safety and it is important to evaluate the status such as shear wave velocity profile of the rockfill zone. A surface wave method can be used to evaluate the rockfill zone but general surface wave method can have a difficulty to be applied for valuation of rockfill zone because of a stiff slope of dam and background noise in the field. In this research, HWAW method is applied to evaluate the shear wave velocity of rockfill zone. The field test of the proposed method is simple and fast and the HWAW method can determine the reliable shear wave velocity profile under severe noise field condition. To show feasibility of the proposed method, numerical simulation and field tests were performed. Through the numerical and field tests, the applicability of the proposed method was shown.

Determination of Shear Wave Velocity Profile Model Considering Uncertainty Caused by Spatial Variation of Material Property in Rockfill Zone of Fill Dam (물성치 변동성에 의한 불확실성이 고려된 국내 필댐 사력부를 위한 전단파 속도 주상도 모델)

  • Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.29-36
    • /
    • 2019
  • There always exist the spatial variations of material properties such as a shear wave velocity in a dam and between same type dams. These uncertainties cause those in evaluation of a shear wave velocity profile of a dam and should be considered in determining the shear wave velocity profile for a rockfill zone of a fill dam. In this paper, these uncertainties of a shear wave velocity in the rockfill zone of the fill dam in Korea are evaluated. And the shear wave velocity profile model considering these uncertainties in rockfillzone is proposed using the method based on Harmonic wavelet transform. The proposed shear wave velocity profile model is compared with Sawada-Takahashi model widely used for evaluation of a shear wave velocity profile of a rockfill zone of fill dams.

A Case Study on Verification of Inverse Calculation of Dynamic Properties of Rockfill Zone using Microearthquake Records (댐 계측지진 활용 사력죤 물성 역산법 검증 사례 연구)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.759-764
    • /
    • 2010
  • In this study, from the comparison of the results obtained by 3 dimensional dynamic analyses using the inverse-calculated properties and those by calculating using the real earthquake records, the inverse calculation method for obtaining the dynamic properties of rockfill materials was verified. The fundamental frequency of the dam was determined by analyzing the response spectrum of observed records. By repeated dynamic analyses for various shear moduli of rockfill material, the shear moduli in the rockfill zone that satisfy the relationship between the fundamental frequency obtained by analysis of the observed records and that by numerical analyses were determined. Using the determined shear moduli, the 3 dimensional dynamic analyses for the dam were carried out and the result were compared with the real response characteristics on the crest of the dam.

  • PDF

A Reliability Analysis of Slope Stability of Earth-Rockfill Dam (Earth-Rockfill Dam사면파괴에 대한 신뢰도 연구(I))

  • 박현종;이인모
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.21-32
    • /
    • 1991
  • The purpose of this paper is to develop a reliability model for slope stability of Earth-rockfill dams which accounts for all uncertainties encountered. The uncertain factors of the design variables include the cohesion, the angle of internal friction, and the porewater Pressure in each zone. More specifically, the model errors in estimating those variables are studied in depth. To reduce the uncertainties due to model errors, updated design variables are obtained using Bayesian Theory. For stability analysis, both the two-dimesional stability analysis and the three-dimensional stability analysis where the end effects and the system reliability concept are considered are used for the reliability calculations. The deterministic safety factor by the three-dimensional analysis is lager than that by the two-dimensional anlysis. However, the probability of failure by the three-dimensional analysis is about 3.5 times larger that by the two-dimensional analysis. It is because the system reliability concept is used in the three-dimensional analysis. The sensitivity analysis shows that the probability of failure is more sensitive to the uncertainty of the cohesion than that of the angle of internal friction.

  • PDF

Determination of Representative Shear Wave Velocity Profile for Rockfill Zone of CFRD Considering Uncertainty Caused by Spatial Variation of Material Property (국내 콘크리트 표면차수벽형 석괴댐(CFRD) 사력존의 전단파 속도 분포 결정(II): 물성치의 공간 변동성에 의한 불확실성이 고려된 CFRD 사력존의 1차원 전단파 속도 주상도의 결정)

  • Hwang, Hea-Jin;Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.17-24
    • /
    • 2014
  • This paper determines 1D shear wave velocity (Vs) distribution of rockfill zone of CFRD using Vs profile determined by the surface wave test. There exists uncertainty in the field test result because of a spatial variation of material property. The harmonic wavelet transform is used to evaluate the uncertainty of test result and generate random 1D Vs distributions which may exist in the rock fill zone. Through the statistical analysis of generated random Vs distributions, the representative 1D Vs distribution considering the uncertainty of test results is proposed for the rockfill zone of CFRD in Korea.

Evaluation of hydraulic fracturing of rockfill dam during first filling by measurement and numerical analysis (계측 및 수치해석에 의한 초기담수시 사력댐 코어존 수압할렬 안정성 분석)

  • Lee, Jong-Wook;Cho, Sung-Eun;Kim, Ki-Young;Lim, Heui-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.799-805
    • /
    • 2008
  • In this study load transfer and hydraulic fracturing of core zone of object rockfill dam are estimated and monitored by a numerical analysis and a instrumentation immediately after the construction and during the first impounding. The estimated results are compared with the monitored results. It reveal that the core zone is safe on the hydraulic fracturing.

  • PDF

Estimation of Dynamic Characteristics of Core Zone of Rockfill Dam by Multi-channel Analysis of Surface Waves (MASW 조사를 통한 사력댐 코어존 동적물성의 평가)

  • Lee, Jong-Wook;Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.860-868
    • /
    • 2008
  • Seismic safety analysis of rockfill dams are consist of the stability analysis as an simplifed method and the dynamic analysis as an detailed method. When high risk dams such as Multi-purpose dams were often applied detailed method by dynamic analysis, dynamic properties of dam materials such as shear modulus are considered as most important factor. Dynamic material properties such as shear modulus had to be investigated by cyclic triaxial test et al. during design and construction stage but these were not conducted because of the condition of domestic seismic design technique. MASW and SASW methods had been applied as a non destructive method to investigate dynamic material properties of existing rockfill dam, has no problems in dam safety at present. These methods were usually performed under the assumptions that the subsurface can be described horizontally homogeneous and isotropic layers. Recent studies(Marwin, 1993, Kim, 2001) showed that surface waves generated through inclined structures have different characteristics from those through a horizontally homogeneous layered model. further Kim et al(2005) and Min and Kim(2006) showed that central core type rockfill dam overestimated the shear wave velocities as increasing the depth through the 3D numerical modelling dut to the effect of outer rockfill and geometrical reasons In this study the results of shear wave velocities of seven rockfill dams form comprehensive facility review, was carried out from 2003 to 2007, were collected and analysed to establish the shear wave velocity distribution characteristics in increasing confining stress in rockfill dams and surface wave velocity ranges in rockfill dam through MASW and the limitation in application are discussed to be utilized as an reference value for dynamic analysis.

  • PDF

Compaction Characteristics of Zone-1 Material in Concrete Faced Rockfill Dam (콘크리트 표면 차수벽형 석괴댐의 Zone-1재료에 대한 다짐특성)

  • Yea, Geu-Guwen;Han, Sang-Hyun;Lee, Jae-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • Bedding zone in CRFD (Concrete Faced Rockfill Dam) requires bearing capacity to support the concrete face slab uniformly. Also, shear strength which is a key factor in slope stability and impermeability which is to prevent a loss of soils in case of leakage of concrete slab face are needed. In this study, trial prototype construction for bedding zone in CRFD was performed to investigate the compaction characteristics of bedding zone according to the frequency of compaction, water contents and so on. As a results of series of field test, the compaction characteristics of bedding zone in CRFD was affected considerably by the depth of compaction layer and frequency of compaction.

  • PDF

Case Study on Estimation of Shear Wave Velocity in Core Zone of Rockfill Dam Using MASW (MASW를 이용한 사력댐 코어죤 전단파속도 산정 사례 연구)

  • Lee, Jongwook;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.53-60
    • /
    • 2008
  • The purpose of this study is to make case studies on estimation of shear wave velocity in core zone of some rockfill dams by MASW (Multi-channel Analysis of Surface Waves) and to compare the results of case studies with those of the empirical method. Furthermore, the purpose is to recommend the range of shear wave velocity in core zone by MASW and to supply the preliminary data for estimation of shear wave velocity in core zone which is needed for dynamic analysis. From the results of case studies and the comparison between the results of case studies and those of empirical equation, it was found that the shear wave velocities obtained by MASW were smaller than those by the empirical recommendation (Sawada & Takahashi) in the depth of more than 10 m. Also, it is recommended that using the lower bound of empirical formulation by Sawada and Takahashi be available and resonable in case that MASW is not available due to the field condition and the investigation is preliminary.

  • PDF

Study on Seepage Behavior of Concrete Faced Gravel-Fill Dam (표면차수벽형사력댐의 침투거동에 관한 연구)

  • Cho, Sung-Eun;Kim, Ki-Young;Park, Han-Gyu;Ha, Ik-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.836-841
    • /
    • 2008
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages compared with rockfill dam and recently, sand/gravel materials, instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In this paper, the process of water infiltration into the originally unsaturated sand/gravel-fill dam is studied using two-dimensional saturated-unsaturated seepage theory. According to the results of seepage analysis, if the effective drainage zone is installed in the dam, the reservoir water infiltrate into the dam along a downward flow path towards the lower drainage area. The main body constructed with sand/gravel materials, therefore, remains unsaturated.

  • PDF