• Title/Summary/Keyword: Rock Strength

Search Result 1,151, Processing Time 0.025 seconds

Investigation of Frozen Rock Failure using Thermal Infrared Image (열적외선영상을 이용한 동결된 암석의 파괴특성 연구)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.144-154
    • /
    • 2015
  • Mechanical energy is accumulated in the object when stress is exerted on rock specimens, and the failure is occurred when the stress is larger than critical stress. The accumulated energy is emitted as various forms including physical deformation, light, heat and sound. Uniaxial compression strength test and point load strength test were carried out in low temperature environment, and thermal variation of rock specimens were observed and analyzed quantitatively using thermal infrared camera images. Temperature of failure plane was increased just before the failure because of concentration of stress, and was rapidly increased at the moment of the failure because of the emission of thermal energy. The variations of temperature were larger in diorite and basalt specimens which were strong and fresh than in tuff specimens which were weak and weathered. This study can be applied to prevent disasters in rock slope, tunnel and mine in cold regions and to analyze satellite image for predicting earthquake in cold regions.

Side Friction of Deep Foundation for Transmission Tower in Rock (암반에 설치된 송전철탑 심형기초의 주면마찰력 평가)

  • Kim, Dae-Hong;Lee, Dae-Soo;Chun, Byung-Sik;Kim, Byung-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.149-160
    • /
    • 2007
  • Six prototype field tests (five 1/8 and one 1/2 scale tests) have been conducted in order to determine the uplift resistance of deep foundation for transmission line structures. Test sites, located in the city of Eumseng in Choongbuk province, are classified as gneiss. These test results reveal failures not along the foundation-rock interface but either along the damaged surrounding rock mass caused by excavation or along the pre-existing rock joint. Test results also show the uplift resistance which is 20 $\sim$ 30% higher than the current design strength of side friction. In addition to fold tests, four concrete core samples between the liner plate and the surrounding rock mass have been obtained from the existing transmission foundations to study the effect of the liner plate which is installed prior to placing concrete. The compressive strength of these concrete core samples shows 63 $\sim$ 72% of the strength at the time of foundation construction. Side frictional resistance based on such less compacted concrete reaches satisfying uplift design strength.

The influence of dynamic force balance on the estimation of dynamic uniaxial compression strength (암석시료 내 동적하중 분배특성이 동적일축압축강도에 미치는 영향성에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.14-23
    • /
    • 2019
  • It has been an always issue for the blasting or the impact analysis to consider the strength characteristics of the rock materials associate with loading rate dependency. Due to the nature of transient loading, the dynamic rock test requires a careful technique to achieve the stress equilibrium state of the specimen. In this study, to investigate the relationship between the rock dynamic strength and the stress equilibrium state, a series of dynamic uniaxial compression tests for Pocheon granite were performed. As a result, the unbalanced stress state on the specimen can lead to the premature failure on the specimen and the less estimation of dynamic strength characteristic as well as the overestimation of strain rate. Consequently, a careful consideration of rock fracture process to achieve the dynamic force balance on the specimen should be required to make an reasonable evaluation of rock dynamic strength.

A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication Methods (현장암반 평가에 관한 제안 및 암반분류법들간의 상관관계 고찰)

  • Kim, Hong-Pyo;Chang, Ho-Min;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.133-147
    • /
    • 2010
  • A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication MethodsThe purpose of this study is to find out rock mass classification method which is practically applicable to a field and to consider a correlation between the new method and the old method. Rock mass is an aggregate of separated blocks. To express the aggregate, the properties of both intact rock and rock mass should be considered. In this study, therefore, parameters for rock mass description are classified into rock strength and rock structure. Indices for parameters evaluation are obtained from old method and the strength and structure property of rock is described by using those indices. Value of 25 is allocated to each parameter obtained. $RMR_{basic}$ =0.86(X=Method)+14.47 is derived between $RMR_{basic}$ and this study and $RMR^*$ = 0.87(X-Method)+9.20 is derived between revised RMR and this study. Coefficient of determination is $R^2$=0.841 and $R^2$=0.846 each.

Changes of Material Properties of Pre-heated Tuff Specimens (예열처리된 응회암 시험편의 물성 변화)

  • Yoon, Yong-Kyun;Kim, Sa-Hyun
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • Tuff specimens were thermally treated with predetermined temperatures of 200, 400 and $600^{\circ}C$ to construct specimens simulating weathered tuff rocks. Specific gravity, absorption ratio, elastic wave velocity, uniaxial compressive strength, Brazilian tensile strength, Young's modulus, Poisson's ratio and slake-durability index were measured for pre-heated specimens. Heating of rock specimens entailed the degradation of material properties except for slake-durability index. It was found that correlations among P-wave velocity, uniaxial compressive strength, Brazilian tensile strength, Young's modulus and absorption ratio are high. Regression equations which use the P-wave velocity as an independent variable were presented to evaluate uniaxial compressive strength, Brazilian tensile strength, Young's modulus and absorption ratio.

Dynamic response of coal and rocks under high strain rate

  • Zhou, Jingxuan;Zhu, Chuanjie;Ren, Jie;Lu, Ximiao;Ma, Cong;Li, Ziye
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.451-461
    • /
    • 2022
  • The roadways surrounded by rock and coal will lose their stability or even collapse under rock burst. Rock burst mainly involves an evolution of dynamic loading which behaves quite differently from static or quasi-static loading. To compare the dynamic response of coal and rocks with different static strengths, three different rocks and bituminous coal were selected for testing at three different dynamic loadings. It's found that the dynamic compression strength of rocks and bituminous coal is much greater than the static compression strength. The dynamic compression strength and dynamic increase factor of the rocks both increase linearly with the increase of the strain rate, while those of the bituminous coal are irregular due to the characteristics of multi-fracture and heterogeneity. Moreover, the absorbed energy of the rocks and bituminous coal both increase linearly with an increase in the strain rate. And the ratio of absorbed energy to the total energy of bituminous coal is greater than that of rocks. With the increase of dynamic loading, the failure degree of the sample increases, with the increase of the static compressive strength, the damage degree also increases. The static compassion strength of the bituminous coal is lower than that of rocks, so the number of small-scale fragments was the largest after bituminous coal rupture.

Numerical Simulation for Characteristics of Rock Strength and Deformation Using Grain-Based Distinct Element Model (입자 기반 개별요소모델을 통한 암석의 강도 및 변형 특성 모사)

  • Park, Jung-Wook;Lee, Yun-Su;Park, Chan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.243-254
    • /
    • 2014
  • The present study introduces a numerical technique to simulate the mechanical behavior of brittle rock, based on a grain-based model combined with Universal Distinct Element Code (GBM-UDEC). Using the technique, the microstructure of rock sample was represented as an assembly of deformable polygonal grains, and the failure process with the evolution of micro tensile cracks under compression was examined. In terms of the characteristics of strength and deformation, the behaviors of the simulated model showed good agreement with the observations in the laboratory-scale experiments of rock.

Development of a New Direct Shear Apparatus Considering the Boundary Conditions of Rock Joints (암반의 경계조건을 고려한 절리면 직접전단시험기 개발)

  • 이영휘;김용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.147-157
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures such as cut slopes and tunnels are largely controlled by the conditions of the rock joint as well as its boundary conditions. The conditions of rock joints comprise asperity strength, roughness, and filling materials. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus was developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. The test results for saw-cut teeth joints show that shear strength should be evaluated by considering its specific boundary conditions far the design of tunnels and cut slopes.

Experimental Study on Deformation and Failure Behavior of Limestones under Dynamic Loadings (동적하중 하에서 석회암의 변형 및 파괴거동에 관한 실험적 연구)

  • Kang, Myoung-Soo;Kang, Hyeong-Min;Kim, Seung-Kon;Cheon, Dae-Sung;Kaneko, Katsuhiko;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.339-345
    • /
    • 2012
  • Information on the deformation behavior and fracture strength of rocks subjected to dynamic loadings is important to stability analyses of underground openings underground vibration due to rock blasts, earthquakes and rock bursts. In this study, Split Hopkinson Pressure Bar (SHPB) system was applied to estimate dynamic compressive and tensile fracture strengths of limestone and also examine deformation behavior of limestones under dynamic loadings. A micro-focus X-ray CT scanner was used to observe non-destructively inside the impacted limestone specimens. From the dynamic tests, it was revealed that the limestone have over 140MPa dynamic compressive strength and the strain-rate dependency of the strength. Dynamic Brazilian tensile strength of the limestone exceeds 21MPa and shows over 3 times static Brazilian tensile strength.

Classification of Rock Mass on Cutting Slopes in Muakjae, Seoul (서울 무악재 절취사면에서의 암판정 연구)

    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.158-167
    • /
    • 1999
  • There are substantial difficulties in assessing the volume of soill/rock to be excavated and the cost thereof, which is attributable to the subjective and qualitative methods of rock mass classification prevailing at the moment. This paper intends to introduce more objective and quantitative rock mass classification method easily applicable to the excavation of granites in Muakjae, Seoul. As a result of such study it is proven that Schmidt hammer and point load strength tests are fairly reliable and easily applicable to estimate and quantify uniaxial compressive strength of granitic material in Seoul. In an efforts to confirm the granitic rock mass conditions in 12 meters underground, seismic refraction surveys were made on the top of vertical exposures from where underlying rock mass conditions could be directly inspected. Rock mass boundaries determined by seismic refraction methods were found to agree within a 1m variance with visible differences in rock mass conditions in the vertical exposure beneath the test site. Thus it can be concluded that detailed geotechnical mapping on cutting slopes is a most efficient, dependable and cost-effective technique in assessing likely excavation conditions of shallow granitic mass in Seoul.

  • PDF