• 제목/요약/키워드: Robust parameter design

검색결과 508건 처리시간 0.03초

직접구동 SCARA 로봇 머니퓰레이터에 대한 적응견실제어 (Adaptive robust control for a direct drive SCARA robot manipulator)

  • 이지형;강철구
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.140-146
    • /
    • 1995
  • In case the uncertainty existing in a system is assumed to satisfy the matching condition and to be come-bounded. Y. H. Chen proposed an adaptive robust control algorithm which introduced adaptive sheme for a design parameter into robust deterministic controls. In this paper, the adaptive robust control algorithm is applied to the position tracking control of direct drive robots, and simulation and experimental studies are conducted to evaluate control performance.

  • PDF

QFT Parameter-Scheduling Control Design for Linear Time- varying Systems Based on RBF Networks

  • Park, Jae-Weon;Yoo, Wan-Suk;Lee, Suk;Im, Ki-Hong;Park, Jin-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.484-491
    • /
    • 2003
  • For most of linear time-varying (LTV) systems, it is difficult to design time-varying controllers in analytic way. Accordingly, by approximating LTV systems as uncertain linear time-invariant, control design approaches such as robust control have been applied to the resulting uncertain LTI systems. In particular, a robust control method such as quantitative feedback theory (QFT) has an advantage of guaranteeing the frozen-time stability and the performance specification against plant parameter uncertainties. However, if these methods are applied to the approximated linear. time-invariant (LTI) plants with large uncertainty, the resulting control law becomes complicated and also may not become ineffective with faster dynamic behavior. In this paper, as a method to enhance the fast dynamic performance of LTV systems with bounded time-varying parameters, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks.

파라미터 불확실성을 가지는 연속/이산 특이시스템의 견실 $Η_2$ 제어 (Robust $H_$ Control of Continuous and Discrete Time Descriptor Systems with Parameter Uncertainties)

  • 이종하;김종해;박홍배
    • 전자공학회논문지SC
    • /
    • 제40권4호
    • /
    • pp.251-263
    • /
    • 2003
  • 본 논문에서는 연속시간과 이산시간에서 파라미터 불확실성을 가지는 선형 시불변 특이시스템에 대한 Η₂제어기 존재조건과 설계방법을 행렬부등식으로 제안한다. 먼저, 연속시간의 경우에는 Η₂제어기가 존재하기 위한 필요충분조건과 설계방법을 선형행렬부등식(linear matrix inequality)으로 제시하고, 이산시간의 경우에는 Η₂제어기가 존재하기 위한 충분조건과 설계방법을 행렬부등식으로 제시한다. 마지막으로 연속시간과 이산시간 각각의 경우에서, 파라미터 불확실성을 고려하여 제시한 조건들을 견실 Η₂제어문제로 확장하고, 간단한 예제를 통해 제시한 조건의 타당성을 검토해 본다.

파라미터 해석을 통한 차량 성능 예측 기법 연구 (Study on the Prediction Technique of Vehicle Performance using Parameter Analysis)

  • 김기창;김찬묵;김진택
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.647-653
    • /
    • 2009
  • Taguchi parameter design is an approach to reducing performance variation of quality characteristic value in products and processes. Taguchi has used SN (Signal to Noise) ratio to achieve the appropriate set of operating conditions where variability around target is low in the Taguchi parameter design. This paper describes the prediction technique of vehicle performance using parameter analysis to reduce man hour and test development period as well as to achieve stable NVH performance. Design engineer could efficiently decide the design variable using parameter analysis database in early design stage. These improvements can reduce the time needed to develop better vehicles.

  • PDF

분리 최적화 기법을 이용한 구조적 불확실계의 강인 제어기 설계 (Designing observer-based robust compensators for parametric uncertain systems by block-diagonal approach)

  • 김경수;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.109-112
    • /
    • 1997
  • In this note, we investigate a noniterative design method of an observer-based robust H$\_$2/ controller in the presence of structured real parameter uncertainty by applying Riccati approach based on the guaranteed cost function. Motivated by the numerical difficulty of the problem, we try to develop a simple design method named as block-diagonal approach, which can be solved by the LMIs method. By assuming the block-diagonal structure of Riccati solution, the original problem can be derived into two sequentially decoupled optimization problems as LQG control problem. The proposed method seems to be numerically efficient in obtaining a feasible compensator.

  • PDF

선형 모델추종제어되는 유도전동기에서 견실제어기 설계 (Robust Controller Design in the Linear Model Following Controlled Induction Motor)

  • 김우현;윤경섭;권우현
    • 제어로봇시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.411-418
    • /
    • 1999
  • Generally PI controller is used in the servo system, But the time response of the system which is designed by the PI control scheme is deviated from the desired time response by the system parameter variation or the perturbation like the torque disturbance. LMFC(Linear Model Following Controller) is used to make the response of the system follow that of the model even though the parameter variation or the perturbation exists. In this paper, the design method which uses auxiliary model to construct the robustness enhancer in LMFC is proposed. And this robustness enhancer is designed by robust control theory. The proposed method has facter convergence time against low frequency torque disturbance than LMFC. The results are verified by SIMULINK simulation and experiments.

  • PDF

Disturbance-Observer-Based Robust H Switching Tracking Control for Near Space Interceptor

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.153-162
    • /
    • 2014
  • A novel robust $H_{\infty}$ switching tracking control design method with disturbance observer is proposed for the near space interceptor (NSI) with aerodynamic fins and reaction jets. Initially, the flight envelop of the NSI is divided into small subregions, and a slow-fast loop polytopic linear parameter varying (LPV) model is proposed, to approximate the nonlinear dynamic of the NSI, based on the Jacobian linearization and Tensor-Product (T-P) model transformation approach. A disturbance observer is then constructed, to estimate the modeled disturbance. Subsequently, based on the descriptor system method, a robust switching controller is developed, to ensure that the closed-loop descriptor system is stable with a desired $H_{\infty}$ disturbance attenuation level. Furthermore, the outcome of the proposed switching tracking control problem is formulated as a set of linear matrix inequalities (LMIs). Finally, simulation results demonstrate the effectiveness of the proposed design method.

시간지연을 가지는 파라미터 불확실성 시스템에 대한 견실 비약성 $H^{\infty}$출력궤환 제어기 설계 (Robust and Non-fragile $H^{\infty}$ Output Feedback Controller Design for Parameter Uncertain Systems with Time Delay)

  • 손준혁;조상현;김기태;박홍배
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(5)
    • /
    • pp.17-20
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile Η$^{\infty}$ output feedback controller for parameter uncertain systems with time delay. The sufficient condition of controller existence, and the design method of robust and non-fragile Η$^{\infty}$ output feedback controller are presented. The obtained conditions can be represented as parameterized LMIs, and PLMIs feasibility problems involve infinitely many LMIs hence are very hard to solve. Therefore, PLMIs are replaced by a finite set of LMIs using relaxation techniques(separated convexity concepts). This method is potentially conservative but often provide practically exploitable solutions of difficult problems with a reasonable computational effort. The compatibility of resulting controller is illustrated by numerical example.

  • PDF

나노 스테이지에 대한 슬라이딩-모드 제어 기반의 강인 최적 제어기 설계 (Design of Robust Optimal Controller for Nano Stage using Sliding-mode Control)

  • 최인성;최승옥;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.101-103
    • /
    • 2007
  • In this paper. we design a robust optimal controller for ultra-precision positioning system. Generally, it is hard to control the nanometric scale positioning system because of the parameter uncertainties and external disturbances. To solve this problem. we suggest a control algorithm based on the modified sliding-mode control and the LQ control in an augmented system. The augmented system is composed of additional state variables: state estimates and control input in the nominal system. Through comparison with LQ optimal control, it is verified that the proposed control algorithm is more robust to the unexpected parameter variations and external noises.

  • PDF

시간지연을 가지는 변수 불확실성 특이시스템의 비약성 강인 보장비용 제어 (Robust Non-fragile Guaranteed Cost Control for Uncertain Descriptor Systems with State Delay)

  • 김종해
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1491-1497
    • /
    • 2007
  • This paper considers robust and non-fragile guaranteed cost controller design method for descriptor systems with parameter uncertainties and time delay, and static state feedback controller with gain variations. The existence condition of controller, the design method of controller, the upper bound to minimize guaranteed cost function, and the measure of non-fragility in controller are proposed using linear matrix inequality (LMI) technique, which can be solved efficiently by convex optimization. Therefore, the presented robust and non-fragile guaranteed cost controller guarantees the asymptotic stability and non-fragility of the closed loop systems in spite of parameter uncertainties, time delay, and controller fragility.