• Title/Summary/Keyword: Robust current control

Search Result 301, Processing Time 0.024 seconds

A study on Control toad Torque of Induction Motor using a Disturbance Cancellation Observer (외란 상쇄 관측기를 이용한 유도전동기의 부하 토오크 제어에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • In this paper, vector control to applied disturbance offset feedforward loop control for changing disturbances with various mechanical parameter is suggested. The proposed system estimate load torque based on induction motor torque using minimum diemension state observer. Because speed controller using state observer is used on condition of feedforward loop fur a torque, the robust speed control system realized. In this study, the proposed paper does to heighten reliability of system by presuming and use the speed by voltage and current that is detected without speed sensor. To prove the propriety of this paper, the various simulation carried out adequacy using a Matlab Simulink, and at the same time real system is made, using a ADMC300 digital signal processor, so it is proved. As the experimental result of embodying the system, the robust system is realized.

Advance Angle Control For Industrial Low Voltage SR Motor (산업용 저전압 SR모터의 진상각 제어)

  • 박대섭;신두진;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.232-232
    • /
    • 2000
  • switched reluctance motors and drives are increasingly used in industrial applications due to their robust mechanical structure, low inertia and reduction in the rotor losses. As the motor speed increase turn on angle must be advanced to build up phase current. When C-dump converter is applied to switched reluctance motor, the capacitance of dump C has to have proper value. In this paper advance angle for a switched reluctance motor and capacitance of dump C are investigated. Then proper advance angle and the capacitance of dump-C are propose for the industrial low voltage SR motor.

  • PDF

Torque ripple control of High Current SRM using Fuzzy Controller (퍼지제어기를 이용한 대전류 SRM의 토크리플제어)

  • OH, Dong-Jun;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.373-375
    • /
    • 2004
  • The SRM is more robust and lower cost than other type motors. The inverter for SRM cannot have shoot through fault, since a phase winding of SRM is independent of other phase windings. The SRM has high starting torque and high power density. But it has torque ripples due to nonlinear magnetic characteristics. Therefore, SRM has highly non-linear torque producing characteristics. Because fuzzy logic is a flexible and general-purposed method for implementing non-linear dynamic functions, it is effective for the control of high current SRM. We design the fuzzy controller and demonstrate the fuzzy control system by MATLAB.

  • PDF

Adaptive Speed Identification for Sensorless Vector Control of Induction Motors with Torque (토크를 물리량으로 가지는 적응제어 구조의 센서리스 벡터제어)

  • 김도영;박철우;최병태;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.230-230
    • /
    • 2000
  • This paper describes a model reference adaptive system(MRAS) for speed control of vector-controlled induction motor without a speed sensor. The proposed approach is based on observing the instantaneous torque. The real torque is calculated by sensing stator current and estimated torque is calculated by stator current that is calculated by using estimated rotor speed. The speed estimation error is linearly proportional to error between real torque and estimated torque. The proposed feedback loop has linear component. Furthermore proposed method is robust to parameters variation. The effectiveness is verified by equation and simulation

  • PDF

Sensorless Vector Control of Induction Motor using Sliding Observer (슬라이딩 관측기를 이용한 유도전동기의 센서리스 벡터제어)

  • Park, J.H.;Kim, G.H.;Cho, Y.K.;Kim, C.S.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1922-1924
    • /
    • 1998
  • In this paper, the robust vector control method of Induction Motor for the purpose of improving the system performance deterioration caused by parameter variations is proposed. The full order state observer estimates the stator current and the rotor flux by using the state prediction of state variables. And, the motor speed is estimated without speed sensor using the full order state observer. Also, the parameter variation is compensate by the Sliding Observer. By using this method, speed sensorless control and current contol with no affection of the parameter variation can be obtained simultaneously.

  • PDF

Controller Design of current Mode Controlled DC/DC Converter using Fuzzy Logic Control (전류 모드 제어 방식을 이용하는 DC/DC 컨버터의 퍼지 논리 제어기 설계)

  • Jung, Young-Seok;Moon, Gun-Woo;Roh, Jung-Wook;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.385-387
    • /
    • 1995
  • The current mode controlled DC/DC converter using fuzzy logic controller is proposed. With the proposed control method, the robust and safty guaranteed operation are achieved. For comparison with conventional controller, the PI controller is selected. By the computer simulation results, the validities of the proposed control method will be shown.

  • PDF

A Comparative Analysis of Test Methods of Measuring d- and q-Axes Inductances for Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 인덕턴스 측정법 비교 분석)

  • Kim, Seung-Joo;Kim, Cherl-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.923-928
    • /
    • 2009
  • The performance analysis and robust control of the interior permanent magnet synchronous motor(IPMSM) greatly depend on accurate value of its parameters. To achieve the high performance of torque control, it is necessary to consider exact inductance values because the inductances are nonlinear parameters of operating the IPMSM. Therefore many different methods have been performed for analysis of the methodology for the exact measurement of synchronous inductances. None of them is considered standard, and accuracy levels of all these methods are also not consistent. Among these experimental methods, the DC current decay test and the vector current control test are ideal for a laboratory environment. In this paper, these two test methods are compared by applying inductances to the IPMSM. The paper analyzes the measured inductances of the two methods and their differences with inductances obtained from the finite element method(FEM).

Robust Speed and Efficiency Control of Induction Motors via a Simplified Input-Output Linearization Technique (단순화된 입출력선형화방법에 의한유동전동식의 강인한 속도 및 효솔제어)

  • 김규식;고명삼;하인중;김점근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1066-1074
    • /
    • 1990
  • In this paper, we attempt to control induction motors with high power efficiency as well as high dynamic performance by utilizing the recently developed theories : singular perturbation technique and noninteracting feedback control. Our controller consists of three subcontrollers` a saturation current controller, a decoupling controller, and a well-known flux simulator. The decoupling controller decouples rotor speed (or motor torque) and rotor flux linearly. Our controller does not need the rotor resistance that varies widely with the machine temperature. To illuminate the practical significance of our results, we present simulation and experimental results as well as mathematical performance analysis.

Reduction of Power Ripples in a Doubly Fed Induction Generator Under Current Measurement Errors (DFIG의 전류 측정오차로 인한 발전전력의 리플 저감에 관한 연구)

  • Kim, Young-Il;Kim, Jang-Mok;Hwang, Seon-Hwan;Kim, Chan-Ki;Choy, Young-Do
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.103-107
    • /
    • 2007
  • In doubly fed induction generators (DFIGs), control of rotor currents allows for adjustable speed operation, active, and reactive power control. This paper presents a DFIG control strategy that enhances the active and reactive power control with controllers that can compensate for the errors caused by current measurement path in the DFIG system. The errors can be divided into two categories: offset and scaling errors. These can induce the speed, active, and reactive power pulsations, which are one and two times the fundamental slip frequency in the DFIG. And these undesirable ripples can do the DFIG harm. In this paper, a new compensation algorithm is proposed. Therefore, the proposed algorithm has several advantages: to implement is easy; it require less computation time; it is robust with regard to the variation of the induction generator parameters. In this paper, a new algorithm is introduced by using the integral of phase currents to measure the current ripples of rotor-side converterin the DFIG system. The experiment results are shown the effectiveness of the proposed method.

  • PDF

Performance Analysis of the Eddy Current Braker with Multi-layer Rotor Considering Constant Braking Torque

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Han, Kyoung-Hee;Beak, Soo-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.59-64
    • /
    • 2004
  • Study of an accurate and robust braking control method is required as a technical improvement to the servo system. In particular, the braker exhibiting constant braking performance under speed variation conditions of the prime mover needs to be investigated. In this paper, the braking torque of the eddy current braker between the electromagnet stator and rotating disk is analyzed. The torque-speed characteristics and accurate disk construction are represented. From the computer simulation results, it was found that eddy current braking torque is linear or approximately constant over the desired speed range depending on the rotor material, disk construction, pole number and pole displacement of the stator. These relations are confirmed by experimental results.