• Title/Summary/Keyword: Robust algorithm

Search Result 2,732, Processing Time 0.039 seconds

Dynamic Range Reconstruction Algorithm for Smart Phone Camera Pulse Measurement Robust to Light Condition (조명 조건에 강건한 스마트폰 카메라 맥박 측정을 위한 다이내믹 레인지 재구성 알고리즘)

  • Park, Sang Wook;Cha, Kyoungrae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, handy pulse measurement method was introduced by using smart phone camera. However, measured values are not consistent with the variations of external light conditions, because the external light interfere with dynamic range of captured pulse image. Thus, adaptive dynamic range reconstruction algorithm is proposed to conduct pulse measurement robust to light condition. The minimum and maximum values for dynamic ranges of green and blue channels are adjusted to appropriate values for pulse measurement. In addition, sigmoid function based curve is applied to adjusted dynamic range. Experimental results show that the proposed algorithm conducts suitably dynamic range reconstruction of pulse image for the interference of external light sources.

Super-resolution image enhancement by Papoulis-Gerchbergmethod improvement (Papoulis-Gerchberg 방법의 개선에 의한 초해상도 영상 화질 향상)

  • Jang, Hyo-Sik;Kim, Duk-Gyoo;Jung, Yoon-Soo;Lee, Tae-Gyoun;Won, Chul-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.118-123
    • /
    • 2010
  • This paper proposes super-resolution reconstruction algorithm for image enhancement. Super-resolution reconstruction algorithms reconstruct a high-resolution image from multi-frame low-resolution images of a scene. Conventional super- resolution reconstruction algorithms are iterative back-projection(IBP), robust super-resolution(RS)method and standard Papoulis-Gerchberg(PG)method. However, traditional methods have some problems such as rotation and ringing. So, this paper proposes modified algorithm to improve the problem. Experimental results show that this proposed algorithm solve the problem. As a result, the proposed method showed an increase in the PSNR for traditional super-resolution reconstruction algorithms.

A Study of Image Target Detection and Tracking for Robust Tracking in an Occluded Environment (표적의 부분가림이 존재하는 환경에서 견실한 추적을 위한 영상 표적 탐지, 추적 알고리듬 연구)

  • Kim, Yong;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.982-990
    • /
    • 2010
  • In a target tracking system using image information from a CCD (Charged Couple Device) or an IIR (Imaging Infra-red) sensor, occluded targets can result in track losses. If the target is occlued by background objects such as buildings or trees, probability of track existence will be reduced sharply and track will be terminated due to track maintenance algorithms. This paper proposes data association algorithm based on target existence for the robust tracking performance. we suggest the HPDA (Highest Probability Data Association) algorithm based on target existence and the tracking performance is compared with the established method based on target perceivability. Image tracking simulation that utilizes virtual 3D images and real IR images is employed to evaluate the robustness of the proposed tracking algorithm.

Pre-processing Algorithm for Detection of Slab Information on Steel Process using Robust Feature Points extraction (강건한 특징점 추출을 이용한 철강제품 정보 검출을 위한 전처리 알고리즘)

  • Choi, Jong-Hyun;Yun, Jong-Pil;Choi, Sung-Hoo;Koo, Keun-Hwi;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1819-1820
    • /
    • 2008
  • Steel slabs are marked with slab management numbers (SMNs). To increase efficiency, automated identification of SMNs from digital images is desirable. Automatic extraction of SMNs is a prerequisite for automatic character segmentation and recognition. The images include complex background, and the position of the text region of the slabs is variable. This paper describes an pre-processing algorithm for detection of slab information using robust feature points extraction. Using SIFT(Scale Invariant Feature Transform) algorithm, we can reduce the search region for extraction of SMNs from the slab image.

  • PDF

A Study on the Translation Invariant Matching Algorithm for Fingerprint Recognition (위치이동에 무관한 지문인식 정합 알고리즘에 관한 연구)

  • Kim, Eun-Hee;Cho, Seong-Won;Kim, Jae-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.61-68
    • /
    • 2002
  • This paper presents a new matching algorithm for fingerprint recognition, which is robust to image translation. The basic idea of this paper is to estimate the translation vector of an imput fingerprint image using N minutiae at which the gradient of the ridge direction field is large. Using the estimated translation vector we select minutiae irrelevant to the translation. We experimentally prove that the presented algorithm results in good performance even if there are large translation and pseudo-minutiae.

Robust Face Detection Using Illumination-Compensation and Morphological Processing

  • Yun, Jae-Ung;Lee, Hyung-Jin;Paul, Anjan Kumar;Baek, Joong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.329-330
    • /
    • 2007
  • This paper presents a simple and robust face detection algorithm that can be utilized to video summary. We firstly apply the Illumination-compensation process for reducing the effect of brightness on the image. And then, we analyze the face region based on color in the YCbCr space to obtain the skin color. Also, we try the morphological image processing called closing algorithm to improve the detection. Experimental results demonstrate the effectiveness of our face detection algorithm that leads to 96.7 % precision ratio on average.

  • PDF

A Robust and Computationally Efficient Optimal Design Algorithm of Electromagnetic Devices Using Adaptive Response Surface Method

  • Zhang, Yanli;Yoon, Hee-Sung;Shin, Pan-Seok;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.207-212
    • /
    • 2008
  • This paper presents a robust and computationally efficient optimal design algorithm for electromagnetic devices by combining an adaptive response surface approximation of the objective function and($1+{\lambda}$) evolution strategy. In the adaptive response surface approximation, the design space is successively reduced with the iteration, and Pareto-optimal sampling points are generated by using Latin hypercube design with the Max Distance and Min Distance criteria. The proposed algorithm is applied to an analytic example and TEAM problem 22, and its robustness and computational efficiency are investigated.

A Development of Algorithm on Robust Adaptive Law in Adaptive mechanism showing Chaotic phenomenon (혼돈 현상을 보이는 적응기구에서의 강인한 적응법칙에 관한 알고리즘의 개발)

  • Jeon, Sang-Young;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.322-325
    • /
    • 1994
  • Mareel and Bitmead proved the presence of chaotic signal in random noise by applying dead beat control theory to adaptive mechanism. In this paper robust adaptive theory is proposed. With the property of chaotic signal that has order and law, the proposed theory can enhance the control Performance by applying the recursive algorithm that uses dynamic relation which have small correlation. The performance of proposed algorithm is demonstrated with the computer simulation of position control of electric motor. In this simulation, the adaptive low is adopted to control electric motor and the Presence of chaotic signal in feedback signal is proved by using several method such as time series, fourier spectrum phase portrait method.

  • PDF

Video augmentation technique for human action recognition using genetic algorithm

  • Nida, Nudrat;Yousaf, Muhammad Haroon;Irtaza, Aun;Velastin, Sergio A.
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.327-338
    • /
    • 2022
  • Classification models for human action recognition require robust features and large training sets for good generalization. However, data augmentation methods are employed for imbalanced training sets to achieve higher accuracy. These samples generated using data augmentation only reflect existing samples within the training set, their feature representations are less diverse and hence, contribute to less precise classification. This paper presents new data augmentation and action representation approaches to grow training sets. The proposed approach is based on two fundamental concepts: virtual video generation for augmentation and representation of the action videos through robust features. Virtual videos are generated from the motion history templates of action videos, which are convolved using a convolutional neural network, to generate deep features. Furthermore, by observing an objective function of the genetic algorithm, the spatiotemporal features of different samples are combined, to generate the representations of the virtual videos and then classified through an extreme learning machine classifier on MuHAVi-Uncut, iXMAS, and IAVID-1 datasets.

Infrared Visual Inertial Odometry via Gaussian Mixture Model Approximation of Thermal Image Histogram (열화상 이미지 히스토그램의 가우시안 혼합 모델 근사를 통한 열화상-관성 센서 오도메트리)

  • Jaeho Shin;Myung-Hwan Jeon;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.260-270
    • /
    • 2023
  • We introduce a novel Visual Inertial Odometry (VIO) algorithm designed to improve the performance of thermal-inertial odometry. Thermal infrared image, though advantageous for feature extraction in low-light conditions, typically suffers from a high noise level and significant information loss during the 8-bit conversion. Our algorithm overcomes these limitations by approximating a 14-bit raw pixel histogram into a Gaussian mixture model. The conversion method effectively emphasizes image regions where texture for visual tracking is abundant while reduces unnecessary background information. We incorporate the robust learning-based feature extraction and matching methods, SuperPoint and SuperGlue, and zero velocity detection module to further reduce the uncertainty of visual odometry. Tested across various datasets, the proposed algorithm shows improved performance compared to other state-of-the-art VIO algorithms, paving the way for robust thermal-inertial odometry.