• Title/Summary/Keyword: Robust Steering Control

Search Result 45, Processing Time 0.032 seconds

Design the Autopilot System of using GA Algorithm

  • Lee, Sang-Min;Choo, Yeon-Gyu;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.699-703
    • /
    • 2004
  • The autopilot system targets decreasing labor, working environment, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization, Dynamic ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And, Load Condition of ship acts as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that id disturbance act in non-linear form, become factor who make service of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using GA algorithm,design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

Design of a Robust Controller to Enhance Lateral Stability of a Four Wheel Steer Vehicle with a Nonlinear Observer (비선형 관측기를 이용한 사륜조향 차량의 횡방향 안정성 강화를 위한 강인 제어기 설계)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.120-127
    • /
    • 2007
  • This paper describes the development of a nonlinear observer for four wheel steer (4WS) vehicle. An observer is designed to estimate the vehicle variables difficult to measure directly. A brake yaw motion controller (BYMC), which uses a PID control method, is also proposed for controlling the brake pressure of the rear and inner wheels to enhance lateral stability. It induces the yaw rate to track the reference yaw rate, and it reduces a slip angle on a slippery road. The braking and steering performances of the anti-lock brake system (ABS) and BYMC are evaluated for various driving conditions, including straight, J-turn, and sinusoidal maneuvers. The simulation results show that developed ABS reduces the stopping distance and increases the longitudinal stability. The observer estimates velocity, slip angle, and yaw rate of 4WS vehicle very well. The results also reveal that the BYMC improves vehicle lateral stability and controllability when various steering inputs are applied.

Control of SRM with Modified C-dump Converter in Cooling System of Automobiles (Modified C-dump 컨버터를 이용한 자동차 냉각시스템 SRM 제어)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1297-1302
    • /
    • 2017
  • Recently, SRMs are used in automobiles for power assistant steering, accessory motion control and traction drives. Especially in the motion control and traction drives, safety and efficiency are of paramount importance. The paper describes the essential elements faced in designing and constructing driving circuits for a switched reluctance motor for automobiles. An important factor in the selection of a motor and a drive for industrial application is the cost. The switched reluctance motor(SRM) is a simple, low-cost, and robust motor suitable for variable-speed as well as servo-type applications. With relatively simple converter and control requirements, the SRM is gaining an increasing attention in the drive industry. This paper presents a modified C-dump converter for Switched Reluctance Motor (SRM) machine application in the cooling system of automobiles. The experiments are performed to verify the capability of applicate control method on 6/4 salient type SRM.

Design of The Autopilot System of vessel using Fuzzy Algorithm (퍼지제어 알고리즘을 이용한 선박의 자율운항 시스템 설계)

  • 이민수;추연규;이광석;김현덕;박연식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.801-804
    • /
    • 2003
  • The autopilot system of vessel is proposed to take service safety sorority, to elevate service efficiency, to decrease labor and to improve working environment. Ultimate purpose of it is to minimize the number of crew by guaranteeing economical efficiency of shipping service. Recently, the research is being achieving to compensate various nonlinear parameters of vessel and apply it is course keeping control, track keeping control, roll-rudder stabilization, dynamic ship positioning and automatic mooring control etc. using optimizing control technique. Relation between rudder angle controlled by steering machine of vessel and ship-heading angle, and load condition of ship are nonlinear, which affect various parameters of shipping service. The speed and direction of waves, velocity and quantity of wind, which also cause the non-linearity of it. Therefore the autopilot system of ship requires the robust control algorithm can overcome various non-linearity. On this paper, we design the autopilot system of ship, which overcome nonlinear parameters and disturbance of it using Fuzzy Algorithm, evaluate the proposed algorithm and its excellence through simulation

  • PDF

Design of The Autopilot System of vessel using Fuzzy Algorithm (퍼지제어 알고리즘을 이용한 선박의 자율운항 시스템 설계)

  • 이민수;추연규;이광석;김현덕;박연식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1509-1513
    • /
    • 2003
  • The autopilot system of vessel is proposed to take service safety and security, to elevate service efficiency, to decrease labor and to improve working environment. Ultimate purpose of the proposed system is to minimize the number of crew by guaranteeing economical efficiency of shipping service. Recently, the research is being achieved to compensate various nonlinear parameters of vessel and apply it to course keeping control, track keeping control, roll-rudder stabilization, dynamic ship positioning and automatic mooring control etc. using optimizing control technique. Relation between rudder angle controlled by steering machine of vessel and ship-heading angle, and load condition of ship is nonlinear, which affects various parameters of shipping service. The speed and direction of waves, velocity and quantity of wind, which also cause the non-linearity of it. Therefore the autopilot system of ship requires the robust control algorithm can overcome various non-linearity. On this paper, we design the autopilot system of ship, which overcomes nonlinear Parameters and disturbance of it using Fuzzy Algorithm, evaluate the proposed algorithm and its excellence through simulation.

Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods (실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발)

  • Seo, Eunbin;Lee, Seunggi;Yeo, Hoyeong;Shin, Gwanjun;Choi, Gyeungho;Lim, Yongseob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

Robust Automatic Parking without Odometry using an Evolutionary Fuzzy Logic Controller

  • Ryu, Young-Woo;Oh, Se-Young;Kim, Sam-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.434-443
    • /
    • 2008
  • This paper develops a novel automatic parking algorithm based on a fuzzy logic controller with the vehicle pose for the input and the steering rate for the output. It localizes the vehicle by using only external sensors - a vision sensor and ultrasonic sensors. Then it automatically learns an optimal fuzzy if-then rule set from the training data, using an evolutionary fuzzy system. Furthermore, it also finds the green zone for the ready-to-reverse position in which parking is possible just by reversing. It has been tested on a 4-wheeled Pioneer mobile robot which emulates the real vehicle.

Robust Path Tracking Control for Autonomous Underwater Vehicle with Variable Speed (변속 무인 수중 잠수정을 위한 강인 경로 추적 제어)

  • Choi, Yoon-Ho;Kim, Kyoung-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.476-482
    • /
    • 2010
  • In this paper, we propose a robust path tracking control method for autonomous underwater vehicle with variable speed. The proposed path tracking controller consists of a kinematic controller and a dynamic controller. First, the kinematic controller computes the surge speed and yaw rate to follow the reference path with variable speed. Then the dynamic controller controls the thrust force and yaw torque to move the AUV actually. In the dynamic control, we assume that the sway speed is a disturbance. In addition the dynamic controller is designed based on sliding mode conrol. We also demonstrate the stability of the proposed control method by Lyapunov stability theory. Finally, simulation results illustrate the performance of the proposed control method.

Design the Autopilot System of using Fuzzy Algoritim

  • Kim, Young-Hwi;Bae, Gyu-Han;Park, Jae-Hyung;Kang, Sin-Chool;Lee, Ihn-Yong;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.296-300
    • /
    • 2003
  • The autopilot system targets decreasing labor, working environment improvement, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization. Dynamic Ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And Load Condition of ship as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that is disturbance act in non-linear from, become factor who make serv ice of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using fuzzy algorithm ,Design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

$H_{\infty}$ Robust Yaw-Moment Control Based on Brake Switching for the Enhancement of Vehicle Performance and Stability (차량 성능 및 안정성 향상을 위한 $H_{\infty}$ 요 모멘트 강인제어)

  • Ahn, Woo-Sung;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1899-1909
    • /
    • 2000
  • This paper proposes a new $H_{\infty}$ yaw moment control scheme using brake torque switching for improving vehicle performance and stability especially in high speed driving. In the scheme, one wheel is selected, depending on the vehicle states, at which a brake torque for control is applied. Steering angles are modeled as a disturbance to the system and the $H_{\infty}$ controller is designed to minimize the difference between the performance of the vehicle and that of the desired model. Its performance robustness as well as stability robustness to system parameter variations is assured through ${\mu}$-analysis. Various simulations with a nonlinear 8-DOF vehicle model show that proposed controller enhances the vehicle performance and stability under disturbances and parameter variations as well as under the normal driving condition.