• Title/Summary/Keyword: Robust Stability

Search Result 1,141, Processing Time 0.035 seconds

Experimental Verification on Stability of Robust Saturation Controller (강인 포화 제어기의 안정성에 관한 실험적 검증)

  • Lim, Chae-Wook;Moon, Seok-Jun;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.223-226
    • /
    • 2005
  • In previous research, we proposed robust saturation controller which involves both actuator's saturation and structured real parameter uncertainties. This controller can analytically prescribed the upper and lower bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. And the availability and the effectiveness of the proposed robust saturation controller were verified through numerical simulations. In this paper, we verify the robust stability of this controller through experimental tests. Especially, we show unstable cases of other controllers in comparison with this controller. Experimental tests are carried out in the laboratory using a two-story test structure with a hydraulic-type active mass damper.

  • PDF

Robust Stability of Two-Degrees-of-Freedom Servosystem with Stricture and Unstructured Uncertainties

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1198-1205
    • /
    • 2000
  • A two-degrees-of-freedom servosystem for step-type reference signals has been preposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. this paper considers robust stability of the servosystem incorporating an observer against both structured and unstructured uncertainties of the plant. A condition is obtained as a linear matrix inequality, under which the servosystem is robustly stable independently of the gain of the integral compensator. This result implies that we can tune the gain to achieve a desirable transient response of the servpsystem preserving robust stability. An example is presented to demonstrate that under the robust stability condition, the transient response can be improved by increasing the gain of the integral compensator.

  • PDF

Robust stability of a two-degree-of-freedom servosystem incorporating an observer with multiplicative uncertainty (관측기를 갖는 2자유도 서보계의 승법적인 불확실성에 대한 강인한 안정성)

  • Kim, Young-Bok;Yang, Joo-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers robust stability of this 2DOF servosystem incorporating an observer to the structured and unstructured uncertainties of the controlled plant. A robust stability condition is obtained using Riccati inequality, which is written in a linear matrix inequality (LMI) and independent of the gain of the integral compensator. This result impies that if the plant uncertainty is in the allowable set defined by the LMI condition, a high-gain integral compensation can be carried preserving robust stability to accelerate the tracking response.

  • PDF

Robust Stability of a Servosystem with Multiplicative Uncertainty (곱셈형 불확실성을 갖는 서보계의 강인한 안정성)

  • Kim, Yeong Bok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.125-125
    • /
    • 1996
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers robust stability of this 2DOF servosystem to the unstructured uncertainty of the controlled plant. A robust stability condition is obtained using Riccati inequality, which is independent of the gain of the integral compensator. An example is presented, which demonstrates that the tracking response of the 2DOF servosystem with uncertainty becomes faster when the integral gain made larger under the robust stability condition.

Robust Stability of a Servosystem with Multiplicative Uncertainty (곱셈형 불확실성을 갖는 서보계의 강인한 안정성)

  • 김영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.57-62
    • /
    • 1996
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers robust stability of this 2DOF servosystem to the unstructured uncertainty of the controlled plant. A robust stability condition is obtained using Riccati inequality, which is independent of the gain of the integral compensator. An example is presented, which demonstrates that the tracking response of the 2DOF servosystem with uncertainty becomes faster when the integral gain made larger under the robust stability condition.

  • PDF

Parameter-dependent Robust Stability of Uncertain Singular Systems with Time-varying Delays (시변 시간지연을 가지는 불확실 특이시스템의 변수 종속 강인 안정성)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • In this paper, we present a new delay-dependent and parameter-dependent robust stability condition for uncertain singular systems with polytopic parameter uncertainties and time-varying delay. The robust stability criterions based on parameter-dependent Lyapunov function are expressed as LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general algorithm for both singular systems and non-singular systems. Finally, numerical examples are presented to illustrate the feasibility and less conservativeness of the proposed method.

Robust Stability Analysis for a Fuzzy Feedback Linearization Method using a Takagi-Sugeno Fuzzy Model

  • Kang, Hyung-Jin;Cheol Kwon;Lee, Hee-Jin;Park, Mignon
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.28-36
    • /
    • 1997
  • In this paper, robust stability analysis for the fuzzy feedback linearization regulator is presented. Well-known Takagi-Sugeno fuzzy model is used as the MISO nonlinear plant model. Uncertainty and disturbance are assumed to be included in the model structure with known bounds. For these structured uncertainty and disturbances, robust stability of the close system is analyzed in both input-output sense and Lyapunov sense. The robust stability conditions are proposed by using multivariable circle criterion and the relationship between input-output stability and Lyapunov stability. The proposed stability analysis is illustrated by a simple example.

  • PDF

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

Robust Stability and Disturbance Attenuation for a Class of Uncertain Singularly Perturbed Systems

  • Karimi, H.R.;Yazdanpanah, M.J.
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.164-169
    • /
    • 2001
  • This paper considers the problem of robust stabilization and disturbance attenuation for a class of uncertain singularly perturbed systems with norm-bounded nonlinear uncertainties. It is shown that the state feedback gain matrices can be determined to guarantee the stability of the closed-loop system for all $\varepsilon$$\in$(0, $\infty$). Based on this key result and some standard Riccati inequality approaches for robust control of singularly perturbed systems, a constructive design procedure is developed.

  • PDF