• Title/Summary/Keyword: Robust Speed Control System

Search Result 388, Processing Time 0.025 seconds

Technology development trend of the train network for high speed train (차세대 고속열차 통신네트워크 기술개발 동향)

  • Choi Kweon-hee;Shim Jae-Chul;Baek Jung-Hyun;Lee Byung-Won;Kang Ki-Suk
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1005-1009
    • /
    • 2005
  • The On Board Computer System (ORCS) used for rolling stocks is one of the core equipments in trains, which deals with collecting real-time data of a train to display and record the train's statuses, control the train, and support the driver and maintenance function. Resides, due to high reliability and high speed communication required lately for various electronics including signal1ing devices, train protection system, and multimedia, the necessity of a more robust train communication network is on the lise. This study aims at understanding the technological trend of the current train communication network in order to rapidly cope with the tendency above and providing fundamental data for designing a more advanced communication network for high-speed trains hereafter.

  • PDF

A Study on the Position Control of Permanent Magnet Sychronous Motor using the State Observer (상태관측기에 의한 영구자석동기전동기의 위치제어에 관한 연구)

  • Cho, Kwang-Seung;Park, Sung-Won;Moon, Baek-Young;Shin, Dong-Ryul;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.378-380
    • /
    • 2000
  • According to the rapid growth of high speed and precise industry the application of synchronous motor has been increased. In the application fields, the fast dynamic response is of prime importance. In particular, since the PMSM has characteristics of high speed, high thrust, it has used in high-performance servo drive. From these reasons, it is recently used for high precise position control, and machine tool. In this paper, using the state observer, robust vector position control method for the purpose of improving the system performance deterioration caused by parameter variations is proposed.

  • PDF

A Study on the Application of Sliding Mode Control Algorithm to the Biped Robot System (2족 보행 로봇트 시스템에 대한 슬라이딩 모드 제어알고리즘의 적용에 관한 연구)

  • 한규범;백윤수;양현석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.323-329
    • /
    • 1994
  • In the systems such as walking robots or high speed operating manipulators, the effect of nonlinear terms is important and can not be neglected. Therefore the application of linear control law to such systems is inadequate. Moreover, because of the mathematical modeling errors the systems may become unstable. In this study, we designed a nonlinear controller with sliding mode scheme, which is robust to the modeling errors and applied this control algorithm to the 5 DOF biped robot system. Throught the computer simulations, we examined walking characteris and walking stability of the 5 DOF biped robot system.

  • PDF

Development of the Dynamometer Control System for Medium Speed Diesel Engines

  • Choi, Sang-Gu;Ryu, Sang-Hun;Kim, Jeom-Goo;Park, Ho-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.243-247
    • /
    • 2004
  • The dynamometers which had made in a long time ago could not control the input/output quantity of water minutely and was sensitive to a noise since it was controlled by an analog control method. Therefore, a fully digital controlled system was urgently required to be robust against various noises. In this paper, the new system which can control the amount of circulated water in dynamometer was developed. This system is consisted of an industrial digital type controller and a servo motor. The industrial PLC was used as a main controller for the developed system, and the actuator and servo motor were used to control the inlet and outlet valve independently. The torque signal of load cell was fed back to the main controller to regulate the diesel engines load. Generally, an input/output valve position of the old dynamometer was fixed with a proper situation for an engine output test and the torque was changed according to the time interval. However, the torque value for the dynamometer could not be constantly kept because of the variation of the input water flow and fluid characteristic. Therefore, the automatic control of an inlet and outlet valve should be performed to keep the constant torque. So, the PID control method was applied to solve this problem. Also, the development of a web-based remote control system was described in this paper. This software will give us the convenience of operation, the more efficient operations, and the reduced operator workload for operation of the dynamometer. The application results of the system have been verified at actual diesel engine field.

  • PDF

Development of Vision-based Lateral Control System for an Autonomous Navigation Vehicle (자율주행차량을 위한 비젼 기반의 횡방향 제어 시스템 개발)

  • Rho Kwanghyun;Steux Bruno
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.19-25
    • /
    • 2005
  • This paper presents a lateral control system for the autonomous navigation vehicle that was developed and tested by Robotics Centre of Ecole des Mines do Paris in France. A robust lane detection algorithm was developed for detecting different types of lane marker in the images taken by a CCD camera mounted on the vehicle. $^{RT}Maps$ that is a software framework far developing vision and data fusion applications, especially in a car was used for implementing lane detection and lateral control. The lateral control has been tested on the urban road in Paris and the demonstration has been shown to the public during IEEE Intelligent Vehicle Symposium 2002. Over 100 people experienced the automatic lateral control. The demo vehicle could run at a speed of 130km1h in the straight road and 50km/h in high curvature road stably.

Robust Multithreaded Object Tracker through Occlusions for Spatial Augmented Reality

  • Lee, Ahyun;Jang, Insung
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.246-256
    • /
    • 2018
  • A spatial augmented reality (SAR) system enables a virtual image to be projected onto the surface of a real-world object and the user to intuitively control the image using a tangible interface. However, occlusions frequently occur, such as a sudden change in the lighting environment or the generation of obstacles. We propose a robust object tracker based on a multithreaded system, which can track an object robustly through occlusions. Our multithreaded tracker is divided into two threads: the detection thread detects distinctive features in a frame-to-frame manner, and the tracking thread tracks features periodically using an optical-flow-based tracking method. Consequently, although the speed of the detection thread is considerably slow, we achieve real-time performance owing to the multithreaded configuration. Moreover, the proposed outlier filtering automatically updates a random sample consensus distance threshold for eliminating outliers according to environmental changes. Experimental results show that our approach tracks an object robustly in real-time in an SAR environment where there are frequent occlusions occurring from augmented projection images.

Development of Omnidirectional Ranging System Based on Structured Light Image (구조광 영상기반 전방향 거리측정 시스템 개발)

  • Shin, Jin;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.479-486
    • /
    • 2012
  • In this paper, a ranging system is proposed that is able to measure 360 degree omnidirectional distances to environment objects. The ranging system is based on the structured light imaging system with catadioptric omnidirectional mirror. In order to make the ranging system robust against environmental illumination, efficient structured light image processing algorithms are developed; sequential integration of difference images with modulated structured light and radial search based on Bresenham line drawing algorithm. A dedicated FPGA image processor is developed to speed up the overall image processing. Also the distance equation is derived in the omnidirectional imaging system with a hyperbolic mirror. It is expected that the omnidirectional ranging system is useful for mapping and localization of mobile robot. Experiments are carried out to verify the performance of the proposed ranging system.

Implementation of Self-adaptive System using the Algorithm of Neural Network Learning Gain

  • Lee, Seong-Su;Kim, Yong-Wook;Oh, Hun;Park, Wal-Seo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.453-459
    • /
    • 2008
  • The neural network is currently being used throughout numerous control system fields. However, it is not easy to obtain an input-output pattern when the neural network is used for the system of a single feedback controller and it is difficult to obtain satisfactory performance with when the load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object for control and an algorithm for this, which can replace the existing method of implementing a neural network controller by utilizing activation function at the output node. The real plant object for controlling of this mode implements a simple neural network controller replacing the activation function and provides the error back propagation path to calculate the error at the output node. As the controller is designed using a simple structure neural network, the input-output pattern problem is solved naturally and real-time learning becomes possible through the general error back propagation algorithm. The new algorithm applied neural network controller gives excellent performance for initial and tracking response and shows a robust performance for rapid load change and disturbance, in which the permissible error surpasses the range border. The effect of the proposed control algorithm was verified in a test that controlled the speed of a motor equipped with a high speed computing capable DSP on which the proposed algorithm was loaded.

A Study On Predictive State Observer For Robust Control Of DC Servo Motor (직류 서어보 전동기의 강인성 제어를 위한 예상 상태 업저어버에 관한 연구)

  • Yoon, Byung-Do;Choi, Soon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.426-429
    • /
    • 1988
  • A Microprocessor Based Digital Control System is inherently contained a control lag for processing the control program and a data detection time lag. This two types of time lag may cause the system to become unstable. In this paper proposed predictive state observer is used to solve the two time lag problems. I-P control algorithm is used to attain deadbeat response by adjusting the observer gain to overcome the parameter variation or with disturbance. The speed response shows good performance through computer simulation.

  • PDF

Direct Power Control of PMa-SynRG with Back-to-back PWM Voltage-fed Drive

  • Baek, Jeihoon;Kwak, Sangshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.761-768
    • /
    • 2018
  • In this paper, the performance analysis of a control topology based on the direct output power control (DPC) for robust and inexpensive permanent magnet-assisted synchronous reluctance generator (PMa-SynRG) system is presented. The PMa-SynRG might be coupled to an internal combustion engine running at variable speed. A three-phase PWM rectifier rectifies the generator output and supplies the dc link. A single-phase PWM inverter supplies constant ac voltage at constant frequency to the grid. The overall control algorithm is implemented on a TMS320F2812 digital signal processor board. Simulations results and experimental results verify the operation of the proposed system.