• Title/Summary/Keyword: Robust Optimization

Search Result 709, Processing Time 0.042 seconds

Support vector machine for prediction of the compressive strength of no-slump concrete

  • Sobhani, J.;Khanzadi, M.;Movahedian, A.H.
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.337-350
    • /
    • 2013
  • The sensitivity of compressive strength of no-slump concrete to its ingredient materials and proportions, necessitate the use of robust models to guarantee both estimation and generalization features. It was known that the problem of compressive strength prediction owes high degree of complexity and uncertainty due to the variable nature of materials, workmanship quality, etc. Moreover, using the chemical and mineral additives, superimposes the problem's complexity. Traditionally this property of concrete is predicted by conventional linear or nonlinear regression models. In general, these models comprise lower accuracy and in most cases they fail to meet the extrapolation accuracy and generalization requirements. Recently, artificial intelligence-based robust systems have been successfully implemented in this area. In this regard, this paper aims to investigate the use of optimized support vector machine (SVM) to predict the compressive strength of no-slump concrete and compare with optimized neural network (ANN). The results showed that after optimization process, both models are applicable for prediction purposes with similar high-qualities of estimation and generalization norms; however, it was indicated that optimization and modeling with SVM is very rapid than ANN models.

Numerical Investigation of Thermal Characteristics and Geometrical Optimization in circular tubes with micro fins (원형 단면관 내 미세 휜의 형상 변화에 따른 열.유동 특성 및 최적 형상 개발에 관한 수치 해석)

  • Han, Dong-Hyouck;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1113-1118
    • /
    • 2006
  • A numerical investigation of single phase heat and flow characteristics in circular tubes with a single set of spiral micro fins was performed with varying geometrical parameters like fin height, spiral angle, and number of fins. The properties of $40^{\circ}C$ water was used as a working fluid to simulate a condenser and the RNG $k-{\epsilon}$ turbulence model was adopted. Calculation results were obtained in fully developed turbulent flow with constant surface heat flux boundary condition. Relative terms were introduced to investigate the substitution effect of conventional smooth tubes. The dimensionless terms were the heat transfer enhancement factor, the pressure drop penalty factor, and the efficiency index. Additionally, a numerical optimization was carried out to maximize thermal performance with the concept of the robust design. A statistical analysis showed that fin height interacts with number of fins and spiral angle.

  • PDF

Decentralized Dynamic Controller Design for Uncertain Large-Scale Systems (섭동을 가지는 대규모 시스템의 다이나믹 제어기 설계)

  • Park, J.H.;Won, S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.469-471
    • /
    • 1999
  • In this paper, a dynamic output feedback controller design technique for robust decentralized stabilization of uncertain large-scale systems is presented. Based on the Lyapunov method, a sufficient condition for robust stability, is derived in terms of three linear matrix inequalities(LMIs). The solutions of the LMIs can be easily obtained using efficient convex optimization techniques.

  • PDF

Robust Stabilization Algorithms of Plants Subject to Structured Parameter Perturbations (내개 변수 섭동 구조를 갖는 플랜트의 강인 안정화 알고리즘)

  • 황유섭;이상혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.4
    • /
    • pp.316-325
    • /
    • 1989
  • This paper is concerned with robust stabilization of single input or single output systems. Based on the region of non-destabilizing perturbations some approaches to design which allow the given of structured perturbation of plant parameters and their gradient optimization are given. These algorithms iteratively enlarge the stability hypershere in plant parameter space and can be used to design a controller to stabilize a plant subject to given ranges of parameter excursions.

  • PDF

Global Optimization을 이용한 Structured Singular Value의 계산

  • 이지태
    • ICROS
    • /
    • v.10 no.3
    • /
    • pp.21-26
    • /
    • 2004
  • Structured singular value (SSV)는 robust stability와 robust performance를 매우 엄밀하게 다루기 위해 고안되었다 (Doyle, 1982; Safonov, 1982). 이 엄밀성으로 제어시스템의 설계 및 분석에 광범위하게 사용되고 있다. 강건제어의 단초를 이루었으며 loop failure tolerance, decentralized integral controllability (Campo and Morari. 1994), D-stability (Lee and Edgar, 2001) 등에 SSY가 사용되고 있다. SSV의 중요성이 알려짐에 따라 이것에 관한 많은 연구가 있었다(Fan et at., 1991 ; Pacltard and Pander, 1993), 그러나 이 값의 계산은 매우 어려운 NP-hard인 것으로 판명되었으며 (Braatz et al.. 1994). 실수 불확실 변수에 대한 SSV의 경우 원하는 오차범위 내로 근사 값을 구하는 것도 마찬가지 인 것으로 밝혀졌다(Fu, 1997).(중략)

Robust Non-fragile Decentralized Controller Design for Uncertain Large-Scale Interconnected Systems

  • Park, Ju-H.
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.8-13
    • /
    • 2001
  • In this brief, the design method of robust non-fragile decentralized controllers for uncertain large-scale interconnected systems is proposed. Based on Lyapunov second method, a sufficient condition for asymtotic stability is derived in terms of a linear matrix inequality (LMI), and the measure of non-fragility in controller is presented. The solutions of the LMI can be easily obtained using efficient convex optimization techniques. A numerical example is given to illustrate the proposed method.

  • PDF

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

Optimization of Sheet Metal Forming Process Based on Two-Attribute Robust Design Methodology (2속성 강건 설계를 이용한 박판성형공정의 최적화)

  • Kim, Kyung-Mo;Yin, Jeong-Je;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Fractures and wrinkles are two major defects frequently found in the sheet metal forming process. The process has several noise factors that cannot be ignored when determining the optimal process conditions. Therefore, without any countermeasures against noise, attempts to reduce defects through optimal design methods have often led to failure. In this study, a new and robust design methodology that can reduce the possibility of formation of fractures and wrinkles is presented using decision-making theory. A two-attribute value function is presented to form the design metric for the sheet metal forming process. A modified complex method is adopted to isolate the optimal robust design variables. One of the major limitations of the traditional robust design methodology, which is based on an orthogonal array experiment, is that the values of the optimal design variables have to coincide with one of the experimental levels. As this restriction is eliminated in the complex method, a better solution can be expected. The procedure of the proposed method is illustrated through a robust design of the sheet metal forming process of a side member of an automobile body.

Robust Design of Coordinated Set Planning with the Non-Ideal Channel

  • Dai, Jianxin;Liu, Shuai;Chen, Ming;Zhou, Jun;Qi, Jie;Liang, Jingwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1654-1675
    • /
    • 2014
  • In practical wireless systems, the erroneous channel state information (CSI) sometimes deteriorates the performance drastically. This paper focuses on robust design of coordinated set planning of coordinated multi-point (CoMP) transmission, with respect to the feedback delay and link error. The non-ideal channel models involving various uncertainty conditions are given. After defining a penalty factor, the robust net ergodic capacity optimization problem is derived, whose variables to be optimized are the number of coordinated base stations (BSs) and the divided area's radius. By the maximum minimum criterion, upper and lower bounds of the robust capacity are investigated. A practical scheme is proposed to determine the optimal number of cooperative BSs. The simulation results indicate that the robust design based on maxmin principle is better than other precoding schemes. The gap between two bounds gets smaller as transmission power increases. Besides, as the large scale fading is higher or the channel is less reliable, the number of the cooperated BSs shall be greater.