• Title/Summary/Keyword: Robust Optimization

Search Result 709, Processing Time 0.028 seconds

Robust Design of an Injection Molding Process Considering Integrated Desirability (통합 만족도를 고려한 사출성형공정의 강건 설계)

  • Kim, Kyung-Mo;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.34-41
    • /
    • 2019
  • Warpage and weld line are two major cosmetic defects in the injection molding process. These defects are very sensitive to uncontrollable parameters within the process. The optimization of the design variables can be treated with the use of robust designs. Therefore, in order to minimize the warpage and weld line, a special design method to diminish defects is required. In this study, a new robust design method using designer preference to achieve the optimal robust design conditions in the injection molding process is proposed. The effectiveness of the proposed method is shown with an example of the part of warpage and weld line.

Design Centering by Genetic Algorithm and Coarse Simulation

  • Jinkoo Lee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.215-221
    • /
    • 1997
  • A new approach in solving design centering problem is presented. Like most stochastic optimization problems, optimal design centering problems have intrinsic difficulties in multivariate intergration of probability density functions. In order to avoid to avoid those difficulties, genetic algorithm and very coarse Monte Carlo simulation are used in this research. The new algorithm performs robustly while producing improved yields. This result implies that the combination of robust optimization methods and approximated simulation schemes would give promising ways for many stochastic optimizations which are inappropriate for mathematical programming.

  • PDF

A New Approach to System Identification Using Hybrid Genetic Algorithm

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.107.6-107
    • /
    • 2001
  • Genetic alogorithm(GA) is a well-known global optimization algorithm. However, as the searching bounds grow wider., performance of local optimization deteriorates. In this paper, we propose a hybrid algorithm which integrates the gradient algorithm and GA so as to reinforce the performance of local optimization. We apply this algorithm to the system identification of second order RLC circuit. Identification results show that the proposed algorithm gets the better and robust performance to find the exact values of RLC elements.

  • PDF

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.

Robust Stabilization and Guaranteed Cost Control for Discrete-time Singular Systems with Parameter Uncertainties (변수 불확실성을 가지는 이산시간 특이시스템의 강인 안정화 및 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we consider the design problem of robust stabilization and robust guaranteed cost state feedback controller for discrete-time singular systems with parameter uncertainties by LMI(linear matrix inequality) approach without semi-definite condition and decomposition of system matrices. The objective of robust stabilization controller is to construct a state feedback controller such that the closed-loop system is regular, causal, and stable. In the case of robust guaranteed cost control, the optimal value of guaranteed cost and controller design method are presented on the basis of robust stabilization control technique. Finally, a numerical example is provided to show the validity of the design methods.

A Domain-independent Dual-image based Robust Reversible Watermarking

  • Guo, Xuejing;Fang, Yixiang;Wang, Junxiang;Zeng, Wenchao;Zhao, Yi;Zhang, Tianzhu;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4024-4041
    • /
    • 2022
  • Robust reversible watermarking has attracted widespread attention in the field of information hiding in recent years. It should not only have robustness against attacks in transmission but also meet the reversibility of distortion-free transmission. According to our best knowledge, the most recent robust reversible watermarking methods adopt a single image as the carrier, which might lead to low efficiency in terms of carrier utilization. To address the issue, a novel dual-image robust reversible watermarking framework is proposed in this paper to effectively utilize the correlation between both carriers (namely dual images) and thus improve the efficiency of carrier utilization. In the dual-image robust reversible watermarking framework, a two-layer robust watermarking mechanism is designed to further improve the algorithm performances, i.e., embedding capacity and robustness. In addition, an optimization model is built to determine the parameters. Finally, the proposed framework is applied in different domains (namely domain-independent), i.e., Slantlet Transform and Singular Value Decomposition domain, and Zernike moments, respectively to demonstrate its effectiveness and generality. Experimental results demonstrate the superiority of the proposed dual-image robust reversible watermarking framework.

Physics-based Surrogate Optimization of Francis Turbine Runner Blades, Using Mesh Adaptive Direct Search and Evolutionary Algorithms

  • Bahrami, Salman;Tribes, Christophe;von Fellenberg, Sven;Vu, Thi C.;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • A robust multi-fidelity optimization methodology has been developed, focusing on efficiently handling industrial runner design of hydraulic Francis turbines. The computational task is split between low- and high-fidelity phases in order to properly balance the CFD cost and required accuracy in different design stages. In the low-fidelity phase, a physics-based surrogate optimization loop manages a large number of iterative optimization evaluations. Two derivative-free optimization methods use an inviscid flow solver as a physics-based surrogate to obtain the main characteristics of a good design in a relatively fast iterative process. The case study of a runner design for a low-head Francis turbine indicates advantages of integrating two derivative-free optimization algorithms with different local- and global search capabilities.

Reconfigurable Multidisciplinary Design Optimization Framework (재구성이 가능한 다분야통합최적설계 프레임웍의 개발)

  • Lee, Jang-Hyo;Lee, Se-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.207-216
    • /
    • 2009
  • Modern engineering design problems involve complexity of disciplinary coupling and difficulty of problem formulation. Multidisciplinary design optimization can overcome the complexity and design optimization software or frameworks can lessen the difficulty. Recently, a growing number of new multidisciplinary design optimization techniques have been proposed. However, each technique has its own pros and cons and it is hard to predict a priori which technique is more efficient than others for a specific problem. In this study, a software system has been developed to directly solve MDO problems with minimal input required. Since the system is based on MATLAB, it can exploit the optimization toolbox which is already developed and proven to be effective and robust. The framework is devised to change an MDO technique to another as the optimization goes on and it is called a reconfigurable MDO framework. Several numerical examples are shown to prove the validity of the reconfiguration idea and its effectiveness.

Robust Design in Terms of Minimization of Sensitivity to Uncertainty and Its Application to Design of Micro Gyroscopes (불확실 변수에 대한 구배 최소화를 이용한 강건 최적 설계와 마이크로 자이로스코프에의 응용)

  • Han, Jeong-Sam;Gwak, Byeong-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1931-1942
    • /
    • 2002
  • In this paper a formulation of robust optimization is presented and illustrated by a design example of vibratory micro gyroscopes in order to reduce the effect of variations due to uncertainties in MEMS fabrication processes. For the vibratory micro gyroscope considered it is important to match the resonance frequencies of the vertical (sensing) and lateral (driving) modes as close as possible to attain a high sensing sensitivity. A deterministic optimization in which the difference of both the sensing and driving natural frequencies is minimized as an objective function results in highly enhanced performance but apt to be very sensitive to fabrication errors. The formulation proposed is to attain robustness of the performance by including the sensitivity of the response with respect to uncertain variables as a term of objective function to be minimized. This formulation is simple and practically applicable since no detail statistical information on fabrication errors is required. The geometric variables, beam width, length and thickness of vibratory micro gyroscopes are adopted as design variables and at the same time considered as uncertain variables because here occur the fabrication errors. A robustness test in terms of a percentage yield by using the Monte Carlo simulation has shown that the robust optimum produces twice more acceptable designs than the deterministic optimum. Improvement of robustness becomes bigger as the amount of fabrication errors is assumed larger. Considering that the magnitude of fabrication errors and uncertainties in a MEMS structure are comparatively large, the present method is illustrated to be a viable approach for a robust MEMS design.

Design of the H Current Controller Based on the PSO Algorithm for Reducing the Current Ripple Caused by the Saliencies of SPMSM (SPMSM 인덕턴스 돌극성에 의한 전류리플 저감을 위한 PSO 알고리즘 기반의 H 전류 제어기 설계)

  • Lee, Kwan-Hyung;Young, Jeon-Chan;Lim, Dong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1425-1435
    • /
    • 2013
  • The useful method for determining parameters of weighting functions used to design the $H_{\infty}$ current controller for attenuating the current ripple due to saliencies which SPMSM(Surface Permanent Magnet Synchronous Motor) also incorporates is described. To analyze the effect, the current ripple due to the structural and the saturation saliencies, the SPMSM model with nonlinear inductance function depending on the two independent variables, rotor position and stator current is simulated. After analysis, parameters of the weighting functions for $H_{\infty}$ current controller is selected to satisfy the robust stability, robust performance and specific performance in time and frequency domain by using the PSO(Particle Swarm Optimization) algorithm in the linear SPMSM model. Especially, the robust performance is proved that the selected weighting functions play a role in reducing the current ripple caused by the saliencies of SPMSM at the desired frequency range by the simple experiment.