• Title/Summary/Keyword: Robust Control of Vibration

Search Result 231, Processing Time 0.023 seconds

Design of Robust Convolution Input Shaper for Variation of Parameter (파라메터 변화에 강인한 Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Lim, Byoung-Duk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.127-133
    • /
    • 2001
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers has been considered robustness for only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness for the variation of frequency and damping ratio.

  • PDF

Controller Design and Imbalance Vibration Analysis in Active Magnetic Bearing System (능동자기베어링 시스템의 제어기 설계 및 불균형 진동 분석)

  • 강종규;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.457-462
    • /
    • 2004
  • Active magnetic bearings (AMB's) have become practical in many industrial fields and numbers of studies for magnetic bearing systems have been reported. However, AMB systems are open-loop unstable and thus require feedback control for robust stabilization and performance. In this paper, first, a rotation of the rotor around the inertial axis is considered and a rigorous modeling of a magnetic bearing system in which the rotation of the rotor is on its axis of inertia is developed. Next, to stabilize the AMB system a PID controller is used and experimentally analyze its rotational response.

  • PDF

Design of Robust Input Shaping Filter in the Z-domain (Z-영역에서 강인한 입력성형필터의 설계)

  • Park, Un-Hwan;Lee, Jae-Won;Lim, Byoung-Duk;Joo, Hae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.155-162
    • /
    • 1999
  • Input shaping technique has been used as a simple method of controlling the residual vibration of a flexible manipulator. With the conventional methods previously proposed by several authors, the frequency range that shows a good performance is restricted. When the designed frequency being different from the natural frequency of a system, the performance of control degrades remarkably. This paper introduced a new technique that designs input shaping with robustness in the z-domain.

  • PDF

Structural vibration control using $H_{\infty}$ control theory : unceratinty model ($H_{\infty}$제어이론을 이용한 구조진동제어 - 불확실성 모델)

  • 송병석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.240-245
    • /
    • 1995
  • 제어이론의 역사적 발전사를 고찰해보면 1930년대부터 1960년대까지를 고전 제어(classical control) 시대로 분류되고 이때 주로 사용되었던 용어들은 주파수역(frequency domain)에서 사용된 개념인 극점(pole), 영점(zero), Nyquist, 근궤적(root-Locus) 선도(plot)등으로 대표된다. 그 다음단계인 현대 제어(modern control) 시대 (1960년대-1980년대)때는 새로운 개념들이 도입 되었는데 시간역(time domain)에서 사용되는 상태공간(state-space) 모델, 가제어성(controllability), 가관측성(observability), Kalman 필터, LQG 제어 등이다. 1980년대부터 현재까지를 강인제어(robust control) 시대로 분류하는데 이것의 특징들은 극점이나 영점 대신 상태공간 모델을 사용하여 주파수역에서 정의되는 개념들인 H$_{\infty}$ 합성법, .$\mu$ 해석법, LQG/LTR 및 QFT, Lyapunov 등으로 대표된다. 현대제어시대때는 제어기 K는 공칭 플랜트 모델 G$_{0}$를 기준으로 설계되었으나 실제로 공칭 플랜트 모델은 실제 플랜트와 항상 같을 수가 없었다. 따라서 실제 플랜트 G는 G=G$_{0}$ + .DELTA.G로 표현되며 여기서 .DELTA.G는 플랜트 불 확실성(plant uncertainty), 즉 실제 플랜트와 공칭 플랜트의 차이를 나타낸 다. 이 플랜트 불확실성은 제어기가 실제 응용되어 사용되었을 때 제대로 작동하지 않는 주요 이유중에 하나이다. 이와 같은 상황에서 안정도 강인성 (stability robustness) 및 성능 강인성(performance rosubtness)의 보장은 상 당히 중요한 문제로 대두되었으며 주어진 플랜트 불확실성하에서 이러한 강이성들이 보장되는 제어이론들 중 H$_{\infty}$ 제어이론이 많이 연구/응용 되고 있다. 특히 공칭 플랜트 모델과 함께 사용되는 플랜트 모델과 함께 사용되는 플랜트 불확실성 모델은 직접적으로 성능 및 안정도에 영향을 미치므로 주의 깊게 선정해야 한다.

  • PDF

Development of Hybrid Image Stabilization System for a Mobile Robot (이동 로봇을 위한 하이브리드 이미지 안정화 시스템의 개발)

  • Choi, Yun-Won;Kang, Tae-Hun;Saitov, Dilshat;Lee, Dong-Chun;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.157-163
    • /
    • 2011
  • This paper proposes a hybrid image stabilizing system which uses both optical image stabilizing system based on EKF (Extended Kalman Filter) and digital image stabilization based on SURF (Speeded Up Robust Feature). Though image information is one of the most efficient data for object recognition, it is susceptible to noise which results from internal vibration as well as external factors. The blurred image obtained by the camera mounted on a robot makes it difficult for the robot to recognize its environment. The proposed system estimates shaking angle through EKF based on the information from inclinometer and gyro sensor to stabilize the image. In addition, extracting the feature points around rotation axis using SURF which is robust to change in scale or rotation enhances processing speed by removing unnecessary operations using Hessian matrix. The experimental results using the proposed hybrid system shows its effectiveness in extended frequency range.

Disturbance Rejection and Attitude Control of the Unmanned Firing System of the Mobile Vehicle (이동형 차량용 무인사격시스템의 외란 제거 및 자세 제어)

  • Chang, Yu-Shin;Keh, Joong-Eup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.64-69
    • /
    • 2007
  • Motion control of the system is a position control of motor. Motion control of an uncertain robot system is considered as one of the most important and fundamental research directions in the robotics. Some distinguished works using linear control, adaptive control, robust control strategies based on computed torque methodology have been reported. However, it is generally recognized within the control community that these strategies suffer from the following problems : the exact robot dynamics are needed and hard to implement, the adaptive control cannot guarantee the performance during the transient period for adaptation under the variation, the robust control algorithms such as the sliding mode control need information on the bounds of the possible uncertainty and disturbance. And it produces a large control input as well. In this dissertation, a motion control for the unmanned intelligent robot system using disturbance observer is studied. This system is affected with an impact vibration disturbance. This paper describes a stable motion control of the system with the consideration of external disturbance. To obtain the stable motion independently against the external disturbance, the disturbance rejection is strongly required. To address the above issue, this paper presents a Disturbance OBserver(DOB) control algorithm. The validity of the suggested DOB robust control scheme is confirmed by several computer simulation results. And the experiments with a motor system is performed to give the validity of applicability in the industrial field. This results make the easier implementation of the controller possible in the field.

Enhanced Performance of Disturbance Observer by Embedding a Filter and Its Application to Hard Disk Drive (필터 삽입에 의한 외란 관측기의 성능 향상과 하드디스크 장치에의 적용)

  • Ha, Jongsoo;Park, Gyunghoon;Shim, Hyungbo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.811-817
    • /
    • 2015
  • In this paper, we present a new control structure which is obtained by adding an appropriately designed filter to a conventional disturbance observer. The proposed controlled system preserves advantages of a system with the conventional disturbance observer; disturbance rejection and nominal performance recovery. In particular, by embedding the filter, the disturbance rejection performance is enhanced compared with that of the classical disturbance observer-based controlled system. Moreover, we suggest a condition for the robust internal stability of the considered system in this paper. Simulation results regarding an effect of relatively high-frequency disturbance on hard disk drive are also presented.

Reliable Fault Diagnosis Method Based on An Optimized Deep Belief Network for Gearbox

  • Oybek Eraliev;Ozodbek Xakimov;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.54-63
    • /
    • 2023
  • High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial intelligence (AI) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN model achieved high accuracy in diagnosis.

Response between Collocated Sensor and Actuator Bonded on a Smart Panel (지능판에 동위치화된 압전 센서-액추에이터의 응답특성 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.264-273
    • /
    • 2007
  • A smart panel with structural sensors and actuators for minimizing noise radiation or transmission is described in the paper with the concept of active structural acoustical control. The sensors and actuators are both quadratically shaped piezoelectric polyvinylidene fluoride(PVDF) Polymer films to implement a volume velocity sensor and uniform force actuator respectively. They are collocated on either side of the panel to take advantage of direct velocity feedback(DVFB) strategy, which can guarantee a robust stability and high performance as long as the sensor-actuator response is strictly positive real(SPR). However, the measured sensor-actuator response of the panel showed unexpected result with non-SPR property. In the paper, the reason of the non-SPR property is investigated by theoretical analysis, computer simulation and experimental verification. The investigation reveals that the arrangement of collocated piezoelectric PVDF sensor and actuator pair on a panel is not relevant to get a high feedback gain and good performance with DVFB strategy.

Parametric optimization of an inerter-based vibration absorber for wind-induced vibration mitigation of a tall building

  • Wang, Qinhua;Qiao, Haoshuai;Li, Wenji;You, Yugen;Fan, Zhun;Tiwari, Nayandeep
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.241-253
    • /
    • 2020
  • The inerter-based vibration absorber (IVA) is an enhanced variation of Tuned Mass Damper (TMD). The parametric optimization of absorbers in the previous research mainly considered only two decision variables, namely frequency ratio and damping ratio, and aimed to minimize peak displacement and acceleration individually under the excitation of the across-wind load. This paper extends these efforts by minimizing two conflicting objectives simultaneously, i.e., the extreme displacement and acceleration at the top floor, under the constraint of the physical mass. Six decision variables are optimized by adopting a constrained multi-objective evolutionary algorithm (CMOEA), i.e., NSGA-II, under fluctuating across- and along-wind loads, respectively. After obtaining a set of optimal individuals, a decision-making approach is employed to select one solution which corresponds to a Tuned Mass Damper Inerter/Tuned Inerter Damper (TMDI/TID). The optimization procedure is applied to parametric optimization of TMDI/TID installed in a 340-meter-high building under wind loads. The case study indicates that the optimally-designed TID outperforms TMDI and TMD in terms of wind-induced vibration mitigation under different wind directions, and the better results are obtained by the CMOEA than those optimized by other formulae. The optimal TID is proven to be robust against variations in the mass and damping of the host structure, and mitigation effects on acceleration responses are observed to be better than displacement control under different wind directions.