5
-+
i
Ao

Journal of Drive and Control, Vol.20 No.4 pp.54-63 Dec. 2023

ISSN 2671-7972(print) ISSN 2671-7980(online)
http://dx.doi.org/10.7839/ksfc.2023.20.4.054

Reliable Fault Diagnosis Method Based on An Optimized Deep
Belief Network for Gearbox

Oybek Eraliev!, Ozodbek Xakimov? and Chul-Hee Lee®*
Received: 18 Oct. 2023, Accepted: 16 Nov. 2023

Key Words: Fault diagnosis, Gearbox, Deep Belief Network, Particle Swarm Optimization, Classification

Abstract: High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature
gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial
intelligence (Al) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model
for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the
hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed

model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN
model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated
datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on
different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN

model achieved high accuracy in diagnosis.

Nomenclature

Al: Artificial intelligence

BP: Backpropagation

CD: Contrastive divergence

CNN: Convolutional neural network
DBN: Deep belief network

DE: Differential evolution

DL.: Deep learning

DNN: Deep neural network

DT: Decision tree

EMD: Empirical mode decomposition
FFT: Fast Fourier transform

GA: Genetic algorithm

KNN: k-nearest neighbour

ML: Machine learning

NN: Neural network

PSO: Particle swarm optimization
RBM: Restricted Boltzmann machines
SSAE: Stacked sparse autoencoder
STFT: Short-time Fourier transform
SVM: Support vector machine

WT: Wavelet transform
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1. Introduction

The three main terms used to describe the maintenance
strategy for machinery parts are system health
management, health monitoring, and fault identification
and diagnosis. Mechanical transmission systems account
for 30% of a machine's overall maintenance cost and the
bulk of breakdowns in rotating machinery?. The gearbox
plays a key role in the transmission system that consists of
gears, bearings and driving shafts*®. Any gearbox
problems might result in unwelcome downtime, costly
repairs, and possibly human casualties. Hence, it is critical
to spot and diagnose problems at the early stage.

Different techniques, including vibration signal
analysis, noise signal analysis, lubricant character analysis,
and temperature monitoring, can be utilized to identify the
problem with a machine. Vibration, acoustic, oil-based,
electrical, and thermal signals can all be used to reflect
gearbox conditions*®). Diagnostic by vibration signal is
the most common method because it is assumed that every
machine has a normal spectrum until something goes
wrong, at which point the spectrum change %19,

Normally, signal acquisition, signal preprocessing,
extraction of features from signal, feature
reduction/selection, and defect detection are the five basic
processes in traditional fault detection systems based on
machine learning (ML) models'?. The vibration signal-
based approach has been shown to be useful in gathering
signal data from machines operating at high speeds.
However, extraneous signals from unrelated components
frequently mask the vibration signal'®. Therefore,
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filtering these undesirable signals necessitates signal
preprocessing techniques. Deep learning (DL) models
have simplified fault detection to three main processes in
recent years: signal acquiring, signal processing, and
failure identification'¥. The feature extraction and
selection processes in DL models are automated because
of the various hidden layers. Many applications of DL
have been demonstrated, including medicine®, speech
recognition, natural language processing, and computer
vision'®), According to Zhao et al.'”, systems for defect
diagnosis have frequently used DL models including deep
belief networks (DBNSs), stacked sparse autoencoders
(SSAES), and convolutional neural networks (CNNs). The
specifics of the DL model variations have been covered
by Guo et al.*®.

The performance of DL models improves as the
quantity of the training dataset grows, which is a
significant advantage over ML models. Once ML models
reach a particular level of diagnosis performance,
increasing the number of datasets has no effect on their
performance. However, the proper setting up of DL
models for specific applications is still a work in progress.
Many hyperparameters in DL models must be manually
specified, which takes time. The general hyperparameters
of DL models are the number of epochs, learning rate,
hidden node’s number, number of hidden layers, and
activation function. Hyperparameters are unique to each
type of DL model. For instance, the pooling function,
filter’s number, padding, filter size, and filter stride are all
features of CNN models'®. Sadoughi and Hu® go into
great length about the CNN hyperparameters. On the other
hand, a DBN has a momentum factor and a learning rate
that must be determined before beginning the training
procedure®V, Because of its capacity to extract significant
deep features, the DBN has performed exceptionally well
in multivariate data classification and prediction tasks
among DL models. The DBN model can be used in a wide
range of applications, from complex forecasting tasks to
sensitive medical data prediction, thanks to restricted
Boltzmann machines (RBMs) that can extract
representative features from data. Furthermore, the DBN
architecture contains less hyperparameter variables than
the CNN architecture. In comparison to CNN, optimizing
the DBN's hyperparameters is much simpler. For example,
researchers?>?have conducted several studies on gearbox
fault diagnosis using DBN. But the DBN's
hyperparameters were manually chosen for the majority
of the investigation to ensure precise fault diagnosis.

In this study, the suggested model is built on a DBN,
which has various advantages such as strong
representation of features and extraction capabilities,
unsupervised pretraining, and simple architecture. The
key contributions of this article are summarized as follows:

The proper hyperparameter selection has been
performed on the DBN model by the use of the PSO
algorithm. The learning rate and momentum factor are the
important hyperparameters of the DBN model. The proper
hyperparameter configuration depends on the application,
and the grid search or manual hand tuning approach are
typically used to choose hyperparameters.

The suggested DBN model has a strong capacity to
extract and represent features. Because the vibration
signal dataset is not always linear, the DBN is employed
to find complex relationships between them.

There are two types of gearbox dataset and a variety of
train—test partitions applied. It can be a chance to not only
compare proposed optimized DBN model to other works
such as ML algorithms, deep neural network (DNN), and
CNN, but also learn how the model responds to training
data of various sizes.

The following is how the rest of the article is structured.
The background of the suggested technique is discussed
in Section 2. The method of experimentation is described
in Section 3. The outcome of the suggested model is talked
about in Section 4. The conclusion is presented in Section
5.

2. Method

The diagnosis system used in this study is based on a
combination of DBN, PSO, and spectrogram of short-time
Fourier transform (STFT) images, as illustrated in Fig. 1.
STFT method, which is described in section 2.3, is utilized
in the gearbox datasets. The analysis uses a low-resolution
image size of a 28x28 grayscale image as input data for
fault diagnosis analysis. According to%), a 28x28 image
size is sufficient for defect identification analysis. The
hyperparameters, including momentum factor and
learning rate, for each RBM and neural network (NN) are
optimized by the PSO algorithm. The fitness function is
the classification error of the DBN model as expressed in

Eq. (2).
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true,qme — predicted,y
Test error = vae vave (D
tOtalpredictions

where, true_value denotes actual class number or
ground truth, predicted_value denotes predicted class
number by the model and total_predictions is the
number of predictions performed by the model.

2.1 Deep Belief Network

One variety of deep neural networks is the DBN that
is made up of numerous limited Boltzmann machines
stacked on top of each other. The RBM is a two-layer
generative neural network with a visible layer v =
(v, v3,v3,...,v,) and a hidden layer h =
(hy, hy, hs, . hy) both of which are built on
probabilistic binary units. The basic construction of an
RBM is shown in Fig. 2, with n and m units in the hidden
and visible layers, respectively.

hy hy by h,

V] V) V3 Vin
Fig. 2 Basic structure of a RBM with m
visible nodes and n hidden nodes.

An RBM is an energy-based model in which each
layer's unit has an energy value assigned to it. As shown
in Eq. (2), the energy function is defined as follows:

m n m
E(v, h) = — ZZWleh] - Zbivi -
i=1

i=1 j=1

n

> gty @)

i=1

where w;; is the symmetric weight, v;, h; are the
binary states, and b;, c; are their biases, respectively.

Pre-training and fine-tuning phases make up the
RBM's training technique. Unsupervised learning is used
to extract a deep hierarchical representation of training
data in the pre-training phase by choosing the proper
weights and biases, namely w, b and c. The pre-
training phase's major goal is to find the best parameter set
w, b and c, so that the energy function in Eq. (2)
minimizes to a convergent state. It is more likely that the
association (v, h) with lesser energy exists. As a result,
each correlation's likelihood is inversely proportional to
its energy function:
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e —-E(v,h)

P(w,h) = RS 3)

where ¥, ,e E™M represents a normalization factor.
Hinton?" has suggested contrastive divergence (CD-k) as
a faster training method for the DBN because it is
computationally costly. According to the algorithm,
P(h|v) is used to forecast hidden values h for a given
input vector v. P(v|h) is then used to anticipate new
visible units, v, based on the hidden values obtained. The
conditional probabilities are computed using Egs. (4) and
(5), which are also known as alternating Gibbs sampling:

n
P(v = 1|h) = Sigmoid Z whhi+b; | (4)
=

m
P(h = 1|v) = Sigmoid <z wliv; + c,-) (5)

i=1

where the sigmoid function is expressed as follows:

fs(x) = Sigmoid(x) = (6)

1+e™*

Samples (v®, h®)) are guaranteed to be practical
samples of P(v = 1]h) when the value of k is high
enough. One-step sampling (CD-1) is used in this
investigation since it is good enough to offer a realistic
estimate. Computing the differences between data and
reconstruction values yields the reconstruction error (AW)
and the weight matrix update, as stated in Egs. (7) and (8):

1

AW = — " (vihlD) = i) @)
Ljm

W « W+ a,AW (8)

where m represents number of samples, y, is a
momentum factor and a, is the learning rate.

Correspondingly, biases b and ¢ can be updated by
convergently running one of these chains, as expressed in
Egs. (9) and (10):

m

1
b=vy,b+ a, - Z(v,(,?l) - v )
m=1
1 m
€=yt ap Z(v,(,?]) - U,(,g (10)
m=1

Following the pre-training phase can be used to fine-
tune the parameter sets W, b and c using the algorithm of
backpropagation (BP). The training is done in this step in
the same way that a NN is trained. Weights that are
bidirectional can be transformed to unidirectional weights.
The model training is substantially faster because the
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parameters have already been initialized by unsupervised
learning. Equations (11) and (12) show the parameter
modifications in the NN:

JErr
Wyn < ViWnn — afW (11)
NN
OErr
a < yra-— afm (12)

where Wyy presents the weight of the NN, y, and
a, present the momentum factor and the learning rate,
respectively, and a is a bias for the fine-tuning phase.

The overall structure of the DBN used in this study is
illustrated in Fig. 3.
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Fig. 3 Structure of a deep belief network
2.2 Particle Swarm Optimization

With the advancement of machine intelligence,
approaches such as random search, PSO, grid search,
differential evolution (DE) and genetic algorithm (GA)
can now be used to optimize hyperparameters of deep
learning models. M. M. A. Wahab and et. al.?®have
investigated optimization strategies in depth, and the
analysis revealed that PSO approach is alike to the DE
approach.

The PSO method is made up of three key parameters:
an overall experience (Gbest), a personal experience
(Pbest), and the current movement of the particles in the
search area to identify their next places.

Based on the data, each particle adjusts its velocity and
position as follow:

vt =w vl + ¢ rrand, - (pbestt, — pk&) + ¢,
-rand, - (gbestt, — pk,)
and (14)

pig ' = pig + vig

where v represents the velocity of the ith particle
and d expresses the a particle’s size in the kth iteration
(1<d <n), rand; and rand, are random numbers
in the range of [0, 1], ¢; and ¢, indicate personal and
social learning factors, which are positive numbers,
respectively and w represents the weight of inertia. It is
possible to balance the capacities of global and local
exploration by using equation (15).

Wiax — Wmin
Wi = Wnax — t “t (15)
max

where w,,,, indicates the weight of maximum inertia,
Wpin indicates the weight of maximum inertia and ¢t is
the present iteration. The swarm size has been set to 5 and
iterations have been set to 30 during the analysis.

2.3 Time-Frequency Transformation

Time and frequency representations of the machinery
signal's energy can be revealed using time-frequency
analysis. For machinery defect diagnostics, various time-
frequency transformations have been utilized, including
empirical mode decomposition (EMD), wavelet transform
(WT), STFT, and spectral kurtosis diagram (kurtogram).
Among them, the STFT is frequently employed in time-
frequency analysis of a row vibration signal?*-3V, The
STFT method transforms a time-domain signal to a time-
frequency-domain signal. It divides the large time-series
signal into several the same size of pieces using
windowing function and calculates fast Fourier transform
coefficients (FFTs) for each piece. A matrix is used to
store the calculated values that correspond to the segments.
One of the benefits of STFT is that its results can be used
immediately in the training of ML models. The STFT is
expressed mathematically as follow:

[ee]

STFT(t,w) = fs(t)w(t —1)e Jotdt (16)

—0o

where s(t) represents the time domain vibration
signal, w(t) represents a windowing function, t
represents time, and t represents time index. STFT
supports a variety of windowing functions, including
triangular, rectangular, Hamm, Blackman, Kaiser,
Gaussian, and Hann. When compared to the impacts of
other windows, Hann windowing is often a nice select and
is widely used with random data since it has a negligible
effect on the frequency resolution and amplitude
correctness of the resulting frequency spectrum®. As a
result, in this investigation, the Hann windowing function
is applied, which can be written as follows:

05[1 (Znn)]0< <M-1
h(t)=[' RVESVI (17)
0, otherwise
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where n is the time index and M is the number of
samples.

The librosa open-source package in Python is used to
conduct STFT on the vibration signal. The output is an
Ny e X Mg Matrix with complex numbers, and the
output's absolute values are used. The number of FFT
coefficients for each window (n_fft =1024) is given by
n_fft. The following formula is used to determine

nn_fft:

Myt
nnfft: T+1 (18)

The hop size is set to 512. Following that, the
spectrogram of the data is converted to 28x28 grayscale
images. Each experiment has been repeated 20 times, with
the average results have been used in the study.

Crack on gear feet

Missing one gear foot

Frequency [Hz]

10 20 30 40 50 0 20 30 40

Crack on gear root gear surface

400
300
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0 20 30 40 50 Co 10 20 30 40 50
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Fig. 4 Spectrogram of the vibration data (20
Hz).
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Fig. 5 Spectrogram of the vibration data (30
Hz).

58 Journal of Drive and Control 2023. 12

By using STFT analysis and sampling frequency data,
the gearbox's time-domain signal can be converted into a
time-frequency signal. The spectrograms for both the 20
Hz and 30 Hz datasets are shown in Fig. 4 and Fig. 5,
respectively.

2.4 ML and DL Models Used for Comparative
Study

Support Vector Machine (SVM): SVM is a powerful
supervised learning algorithm used for classification and
regression tasks. It operates by finding the hyperplane that
best separates data points belonging to different classes.
SVM aims to maximize the margin between classes,
defined as the distance between the hyperplane and the
nearest data point of each class. SVM can handle high-
dimensional data effectively and is particularly useful
when the data is not linearly separable by transforming it
into a higher-dimensional space using the kernel trick.

Decision Tree (DT): DTs are versatile models used for
classification and regression. They represent decisions in
a tree-like structure, where each node represents a
decision based on a feature. DTs make decisions by
recursively splitting the dataset based on features, creating
a tree structure. The splits are chosen to maximize
information gain or minimize impurity. One of the key
advantages of DTs is their interpretability, allowing users
to easily understand and visualize the decision-making
process.

k-Nearest Neighbors (KNN): KNN is a
straightforward and intuitive algorithm for classification
and regression. It classifies a data point based on the
majority class of its k nearest neighbors in the feature
space. KNN is a non-parametric and instance-based
algorithm, making predictions directly from the training
dataset. It is effective for tasks with complex decision
boundaries. The choice of the parameter k influences the
algorithm's performance, with smaller values making the
model more sensitive to local fluctuations and larger
values leading to smoother decision boundaries.

DNN: DNN employed in this study was meticulously
configured to capture intricate patterns within the dataset.
The model was trained over 100 epochs, utilizing the
Adam optimizer with a learning rate set at 0.001. The
architecture comprises two hidden layers, each housing
100 neurons. This configuration was chosen to strike a
balance between model complexity and efficiency. The
training process involved the iterative refinement of
internal parameters through the backpropagation
algorithm, enabling the DNN to learn hierarchical
representations of features within the data. The use of two
hidden layers with a considerable number of neurons
facilitated the model's capacity to discern nuanced
relationships present in the vibration signal dataset.

CNN: CNN employed in our research was
intricately designed to extract spatial hierarchies from
grid-structured data, particularly suitable for our vibration
signal dataset. The model underwent training for 100
epochs, employing the Adam optimizer with a learning
rate of 0.001. The architectural design of the CNN is
characterized by two convolutional layers, comprising 64
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and 32 filters, respectively. Subsequently, two fully
connected layers, each with 50 neurons, were incorporated
to capture higher-level abstractions. This architectural
choice was made to ensure the effective extraction of
hierarchical features, promoting adaptability to the
diverse patterns inherent in gearbox fault signals.
Throughout the training process, the CNN iteratively
learned relevant filters and weights through
backpropagation, enhancing its capability to recognize
complex patterns within the input data. The combination
of convolutional and fully connected layers facilitated the
model's ability to discern spatial hierarchies and
relationships, contributing to its robust performance in
fault diagnosis tasks.

3. Experimental Procedure

Two acceleration datasets, including an experimental
gearbox and a wind turbine gearbox, are used in this study.
Fig. 6 presents the experimental setup, and it is detailed
in%),

Motor Sensor 2, x-axis
Controller Sensor 3, y-axis

Sensor 6, x-axis
Sensor 4, z-axis
C—1
oooo

Sensor 7, y-axis
Sensor 8, z-axis
Sensor 1
Motor

Planetary L

Sensor 5 Gearbox

Brake
Controller

Parallel
Gearbox

gooo

[ Base

Fig. 6 Scheme of an experimental setup of
the gearbox

The analysis in this paper mainly focused on gear
issues. Five separate gear’s row vibration signals are
gathered during the data collecting process: healthy, crack
on feet of gear, missing one foot of gear, wear on surface
of gear and crack on gear root. For the fault diagnosis
analysis, each gear situation is assigned a class. The test
setup has eight sensors. The gearbox runs at 20 and 30 Hz.
Sensors lis for motor, while sensor 5 is torque sensors
mounted on coupling part. And acceleration sensors 2, 3,
and 4 are mounted on the planetary gearbox, while the rest
of acceleration sensors are mounted on the parallel
gearbox. Therefore, only sensors 1 and 5 are not employed
to evaluate the suggested diagnosis approach. 2 000 Hz is
used as the sampling frequency.

4. Results and Discussion

Instead of using a system that combines many sensors,
this study examines the model that is suggested on a single
sensor. Because not all sensors in practical applications
offer a reliable signal for analysis, a multi-sensor fusion
method may result in an appropriate diagnosis. As a result,
the primary goal is to perform accurate problem
identification with a single sensor. The impact of the
DBN's hidden layer size on diagnosis performance is
examined in this article, as the number of RBM is one of

the elements that can lead the network to overfitting.

Fig. 7 and Fig. 8 depict the proposed DBN model's
diagnosis performance at 20 and 30 Hz, respectively.
From the graphs, the DBN with 2 RBMs has a slightly
lower performance compared to the rest of the DBNSs.
There is no discernible difference in the performance of
DBNs with 3 RBMs and 4 RBMs. Therefore, the DBN
with 3 RBMs is chosen for diagnosis because it takes less
time to train for parameter and hyperparameter tuning.
Overall accuracy of the optimized DBN is over 99.9% on
the 20Hz dataset as shown in Fig. 7.
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o wn

=
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Sensor 3 Sensor 4 Sensor 6 Sensor 7 Sensor 8

W 2RBMs ®3RBMs = 4RBMs

Fig. 4 Diagnostic accuracy of the optimized
DBN with different layer size (20 Hz).
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Sensor 3 Sensor 4 Sensor 6 Sensor 7 Sensor 8

W2 RBMs ™3 RBMs = 4RBMs

Fig. 5 Diagnostic accuracy of the optimized
DBN with different layer size (30 Hz).

The optimized DBN is also tested on the 30 Hz dataset.
Fig. 8 illustrates the results of the test. The proposed
model attains maximum level of performance accuracy of
99.9% for sensors 2 and 8, while the lowest performance
accuracy of 95% is observed in sensor 4. The overall
performance is over at 95%, which is slightly lower than
that of the 20 Hz dataset.

4.1 Comparative Study of Traditional ML. And
DL Models

Traditional fault diagnosis has been performed for the
datasets. Each equation listed in Table 1 is considered as
one feature. So, overall, thirteen statistical features are
obtained from each 1024 data points of the row vibration
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signal. These feature vectors are used as an input to
traditional ML and DL models.

Table 1 Features from the row vibration signal.

Parameter Equation
Mean 1 = Zn=150)
N
N —
Standard deviation T2 = W
Variance 73 = (Zn=/ 15O ’
B N
RMS 4= [Znm(5(0)
N

T5 = max |s(t)|

N _ 3
Coefficient of skewness T6 = Zn=a (5O —T1)7

Absolute maximum

(N —1)(T2)3
. _ Zaaa(s(®) —T1)*
Kurtosis T7 = “N-DD
. TS5
Crest factor Margin T8 =7
. T5
Margin factor T9 =02
T4
Shape factor T0=1
P T sl
T5
Impulse factor mi=q
P TN Is(0)]
T5
A factor T12 = m %
B factor 713 = —

where s(t) represents the time domain vibration
signal.

In this investigation, SVM, DT and KNN traditional
ML classifiers are used. Gini diversity index is used for
the split criterion in DT model. For the SVM model, a
radial basis kernel function is used, while KNN model's
hyperparameter is Euclidean distance. Thereafter, two DL
models such as DNN and CNN are chosen for
comparative analysis. Six different categories of data are
obtained from sensors at various positions and are used to
test the models. All results of the comparative study for 20
Hz and 30 Hz datasets are listed in Table 2 and Table 3
respectively. It can be noted that from Table 2 and 3 there
is no notable differences in the diagnostic accuracy of the
traditional ML models. The SVM model, which uses the
sensor 2 input for the 20 Hz data set and the sensor 6 input
for the 30 Hz data set, achieves the best diagnosis results.
The models' accuracy varies from 67% to 85%. The
traditional ML models generate inaccurate diagnosis
results when compared to the proposed DBN model
system.

On the other hand, a slight increase is observed in DL
models, especially the CNN model, when compared to
traditional ML models. The CNN model achieves the
highest performance accuracy in the sensor 2 input for the
20 Hz data set and the sensor 6 input for the 30 Hz data
set. Due to its poor performance on sensor 4 (30 Hz), DNN
is inadequate for these data sets. Meanwhile, the proposed
optimized DBN model achieves 95.5% to 99.9% accuracy,
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which is higher than that of traditional ML and DL models
by 10 to 20%.

Table 2 Comparative diagnosis performance
of ML and DL models (20 Hz)

Proposed
Sensors DT SVM KNN DNN CNN DBN
Sens.2  852% 853% 79.8% 80.3% 87.8% 99.9%
Sens.3  84.8% 85.1% 80.1% 86.6% 81.5% 99.9%
Sens. 4  84.9% 84.9% 83.1% 84.5% 84.1%  99.9%
Sens. 6 77.3% 84.83% 752% 81.1% 77.3%  99.5%
Sens.7  80.1% 83.7% 80.2% 75.4% 81.6% 96.8%
Sens. 8  79.8% 82.9% 80.0% 79.6% 852% 99.8%

Table 3 Comparative diagnosis performance
of ML and DL models (30 Hz)

Proposed
Sensors DT SVM KNN DNN CNN DBN
Sens.2  82.1% 82.5% 80.3% 77.5% 80.6% 99.9%
Sens.3  77.8% 822% 78.6% 669% 79.7% 99.5%
Sens.4  76.9% 799% 77.3% 80.5% 81.4% 95.5%
Sens.6  77.2% 83.1% 81.8% 762% 82.3% 99.3%
Sens.7  69.8% 67.5% 69.2% 63.8% 78.7% 99.2%
Sens.8  77.7% 79.8% 782% 659% 84.0% 99.9%

To learn how the model responds to training data of
various sizes, the datasets are split into different train-test
samples, including 80%-20%, 50%-50% and 20%-80%
and the optimized DBN model is evaluated. The result of
the test is shown in Table 4. According to the table, there
is no significant difference between all partitions in
diagnosis accuracy of the proposed optimized DBN model.
The lowest diagnosis performance accuracy of 91.5% is
observed for sensor 4 of the 30 Hz dataset, while the
highest trend is seen for sensor 3 of the 30 Hz dataset,
when the dataset makes up a partition of 20%-80%. It
means that the model can also perform satisfaction
diagnosis performance on a small dataset. It has been
proven that the optimized DBN model has a strong
capacity to extract and represent features.

Table 4 Diagnostic accuracy of the proposed
DBN model in different partitions of the
dataset

80%-  50%-  20%-  80%-  50%-

20% 50% 80% 20% 50% 20%-80%

Semsors o5 20 (0 (30 (30 (30 Hz)
Hz) Hz) Hz) Hz) Hz)
Sens.2  82.1% 82.5% 803% 77.5% 80.6% 99.9%
Sens.3  77.8% 822% 78.6% 669% 79.7%  99.5%
Sens.4  76.9% 79.9% 773% 80.5% 814%  95.5%
Sens.6  77.2% 83.1% 81.8% 762% 823%  99.3%
Sens.7  69.8% 67.5% 69.2% 63.8% 78.7%  99.2%
Sens.8 77.7% 79.8% 782% 65.9% 84.0%  99.9%

4.2 Analysis On Wind Turbine Gearbox

In order to provide strong evidence, the proposed
optimized DBN model is tested on the actual gearbox of a
wind turbine. There are two different types of row
vibration signals in the dataset: healthy and unhealthy
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states. During the data collection operation, the wind
turbine gearbox is operated at 30 Hz'Y. The results of
this study are shown in Fig. 9. The proposed optimized
DBN model has achieved the highest diagnosis
performance of 99.9%. Although the data acquired from
actual structure was generally substantially masked by
undesirable noise, making processing challenging, the
performance of the proposed DBN model for diagnosis
can be found to be good. This demonstrates the
robustness of the suggested optimized DBN model.

100
90 I I
0 I I I I
DT SVM KNN DNN CNN

Proposed
DBN

Fig. 6 Performance of the classifiers on wind
turbine gearbox dataset.

Accuracy (%)
= N w B wv [=2) ~ ©
© © © © © © © o

The superior performance of the optimized DBN
model compared to traditional ML models, as well as
DNN and CNN architectures, can be attributed to several
key factors.

Hierarchical feature learning: DBN excels in
automatically learning hierarchical representations of
features from the input data. The model's ability to
capture intricate patterns and dependencies in time-
frequency visual patterns of gearbox vibrations is crucial
for effective fault diagnosis. Traditional ML models may
struggle to automatically extract such complex
hierarchical features, and even DNN and CNN
architectures might not inherently capture them without
specialized design considerations.

Unsupervised pre-training: DBN employs an
unsupervised pre-training phase, allowing the model to
learn latent representations of the input data before fine-
tuning on the specific diagnostic task. This pre-training
strategy can enhance the model's ability to generalize
well to new and unseen data, a feature that may
contribute to its improved performance compared to
models that lack this pre-training phase.

Efficient representation of non-linear relationships:
The inherent architecture of DBN, with its stacked layers
of stochastic latent variables, enables efficient
representation of non-linear relationships within the data.
This is particularly advantageous for capturing the
intricate and non-linear nature of gearbox fault patterns,
which may be challenging for traditional ML models that
rely on linear assumptions.

PSO for hyperparameter tuning: The integration of
PSO for hyperparameter tuning in the optimization

process further refines the DBN model's performance.
This adaptive optimization technique allows the model to
navigate the complex hyperparameter space effectively,
resulting in a more finely tuned and optimized network
compared to conventional ML models and simpler deep
learning architectures.

Versatility and adaptability: DBN's versatility in
handling diverse datasets, such as those from wind
turbine and experimental gearboxes, highlights its
adaptability to different operational conditions.
Traditional ML models and even some DNN and CNN
architectures may struggle to exhibit such adaptability
without extensive customization.

5. Conclusion

In  conclusion, this study has successfully
demonstrated the effectiveness of an optimized DBN
model in diagnosing gearbox problems induced by high
and intermittent loading cycles. The incorporation of
time-frequency visual pattern identification, coupled
with PSO for hyperparameter tuning, has yielded a
robust and high-performing diagnostic tool. The
application of the proposed model to wind turbine and
experimental gearbox datasets showcased its versatility
and reliability in real-world scenarios.

The academic significance of this research lies in the
advancement of gearbox diagnostics through the fusion
of vibration-based techniques and artificial intelligence
algorithms. The optimized DBN model has shown
superior classification accuracy when compared to
traditional ML and DL algorithms, underscoring its
efficacy in addressing the challenges posed by fatigue
damage in transmission components.

However, it is essential to acknowledge certain
limitations in this study. The evaluation of the proposed
model was conducted on a specific set of gearbox
datasets, namely the wind turbine gearbox and the
experimental gearbox. While these datasets provide
valuable insights, the generalizability of the model to a
broader range of gearbox types and operational
conditions should be explored in future research.
Additionally, the study's focus on high accuracy with a
small amount of sample data raises questions about the
model's performance scalability to larger and more
diverse datasets.

Future research endeavors could enhance the
applicability of the optimized DBN model by expanding
the dataset variety and incorporating more complex real-
world conditions. Moreover, investigating the model's
performance under varying levels of noise, uncertainties,
and fault severity would contribute to a more
comprehensive  understanding of its robustness.
Exploring the integration of additional sensor modalities
and considering the practical implementation of the
proposed diagnostic tool in industrial settings would
further validate its efficacy.
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