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Abstract: High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature 

gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial 

intelligence (AI) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model 

for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the 

hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed 

model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN 

model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated 

datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on 

different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN 

model achieved high accuracy in diagnosis. 

 

Nomenclature 

 

AI: Artificial intelligence 

BP: Backpropagation 

CD: Contrastive divergence  

CNN: Convolutional neural network 

DBN: Deep belief network 

DE: Differential evolution 

DL: Deep learning 

DNN: Deep neural network 

DT: Decision tree 

EMD: Empirical mode decomposition 
FFT: Fast Fourier transform 

GA: Genetic algorithm 
KNN: k-nearest neighbour 
ML: Machine learning 

NN: Neural network 

PSO: Particle swarm optimization  

RBM: Restricted Boltzmann machines 

SSAE: Stacked sparse autoencoder  

STFT: Short-time Fourier transform 

SVM: Support vector machine 

WT: Wavelet transform 
 

1. Introduction 

 
The three main terms used to describe the maintenance 

strategy for machinery parts are system health 

management, health monitoring, and fault identification 

and diagnosis. Mechanical transmission systems account 

for 30% of a machine's overall maintenance cost and the 

bulk of breakdowns in rotating machinery1). The gearbox 

plays a key role in the transmission system that consists of 

gears, bearings and driving shafts2-3). Any gearbox 

problems might result in unwelcome downtime, costly 

repairs, and possibly human casualties. Hence, it is critical 

to spot and diagnose problems at the early stage.  

Different techniques, including vibration signal 

analysis, noise signal analysis, lubricant character analysis, 

and temperature monitoring, can be utilized to identify the 

problem with a machine. Vibration, acoustic, oil-based, 

electrical, and thermal signals can all be used to reflect 

gearbox conditions4-9). Diagnostic by vibration signal is 

the most common method because it is assumed that every 

machine has a normal spectrum until something goes 

wrong, at which point the spectrum change 10-11). 

Normally, signal acquisition, signal preprocessing, 

extraction of features from signal, feature 

reduction/selection, and defect detection are the five basic 

processes in traditional fault detection systems based on 

machine learning (ML) models12). The vibration signal-

based approach has been shown to be useful in gathering 

signal data from machines operating at high speeds. 

However, extraneous signals from unrelated components 

frequently mask the vibration signal13). Therefore, 

* Corresponding author: gdhong@hankook.ac.kr 

1 Department of Control & Mechanical Engineering, the 

Graduate School, Hankook University, Busan, 48547 Korea 

2 Department of Mechanical Engineering, Jeju National 

University, Jeju 63243, Korea 

Copyright Ⓒ 2021, KSFC 
This is an Open-Access article distributed under the terms of the Creative Commons 

Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, 

provided the original work is properly cited. 



Oybek Eraliev, Ozodbek Xakimov and Chul-Hee Lee

드라이브 · 컨트롤 2023. 12   55

filtering these undesirable signals necessitates signal 

preprocessing techniques. Deep learning (DL) models 

have simplified fault detection to three main processes in 

recent years: signal acquiring, signal processing, and 

failure identification14). The feature extraction and 

selection processes in DL models are automated because 

of the various hidden layers. Many applications of DL 

have been demonstrated, including medicine15), speech 

recognition, natural language processing, and computer 

vision16). According to Zhao et al.17), systems for defect 

diagnosis have frequently used DL models including deep 

belief networks (DBNs), stacked sparse autoencoders 

(SSAEs), and convolutional neural networks (CNNs). The 

specifics of the DL model variations have been covered 

by Guo et al.18). 

The performance of DL models improves as the 

quantity of the training dataset grows, which is a 

significant advantage over ML models. Once ML models 

reach a particular level of diagnosis performance, 

increasing the number of datasets has no effect on their 

performance. However, the proper setting up of DL 

models for specific applications is still a work in progress. 

Many hyperparameters in DL models must be manually 

specified, which takes time. The general hyperparameters 

of DL models are the number of epochs, learning rate, 

hidden node’s number, number of hidden layers, and 

activation function. Hyperparameters are unique to each 

type of DL model. For instance, the pooling function, 

filter’s number, padding, filter size, and filter stride are all 

features of CNN models19). Sadoughi and Hu20) go into 

great length about the CNN hyperparameters. On the other 

hand, a DBN has a momentum factor and a learning rate 

that must be determined before beginning the training 

procedure21). Because of its capacity to extract significant 

deep features, the DBN has performed exceptionally well 

in multivariate data classification and prediction tasks 

among DL models. The DBN model can be used in a wide 

range of applications, from complex forecasting tasks to 

sensitive medical data prediction, thanks to restricted 

Boltzmann machines (RBMs) that can extract 

representative features from data. Furthermore, the DBN 

architecture contains less hyperparameter variables than 

the CNN architecture. In comparison to CNN, optimizing 

the DBN's hyperparameters is much simpler. For example, 

researchers22-25)have conducted several studies on gearbox 

fault diagnosis using DBN. But the DBN's 

hyperparameters were manually chosen for the majority 

of the investigation to ensure precise fault diagnosis. 

In this study, the suggested model is built on a DBN, 

which has various advantages such as strong 

representation of features and extraction capabilities, 

unsupervised pretraining, and simple architecture. The 

key contributions of this article are summarized as follows:  

The proper hyperparameter selection has been 

performed on the DBN model by the use of the PSO 

algorithm. The learning rate and momentum factor are the 

important hyperparameters of the DBN model. The proper 

hyperparameter configuration depends on the application, 

and the grid search or manual hand tuning approach are 

typically used to choose hyperparameters. 

The suggested DBN model has a strong capacity to 

extract and represent features. Because the vibration 

signal dataset is not always linear, the DBN is employed 

to find complex relationships between them. 

There are two types of gearbox dataset and a variety of 

train–test partitions applied. It can be a chance to not only 

compare proposed optimized DBN model to other works 

such as ML algorithms, deep neural network (DNN), and 

CNN, but also learn how the model responds to training 

data of various sizes. 

The following is how the rest of the article is structured. 

The background of the suggested technique is discussed 

in Section 2. The method of experimentation is described 

in Section 3. The outcome of the suggested model is talked 

about in Section 4. The conclusion is presented in Section 

5. 

 

2. Method 

 

The diagnosis system used in this study is based on a 

combination of DBN, PSO, and spectrogram of short-time 

Fourier transform (STFT) images, as illustrated in Fig. 1. 

STFT method, which is described in section 2.3, is utilized 

in the gearbox datasets. The analysis uses a low-resolution 

image size of a 28×28 grayscale image as input data for 

fault diagnosis analysis. According to26), a 28×28 image 

size is sufficient for defect identification analysis. The 

hyperparameters, including momentum factor and 

learning rate, for each RBM and neural network (NN) are 

optimized by the PSO algorithm. The fitness function is 

the classification error of the DBN model as expressed in 

Eq. (1). 

 

 

Fig. 1 Overall flowchart of the diagnosis 

system. 
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𝑇𝑒𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 =
𝑡𝑟𝑢𝑒𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑣𝑎𝑙𝑢𝑒

𝑡𝑜𝑡𝑎𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

(1) 

 

where, 𝑡𝑟𝑢𝑒_𝑣𝑎𝑙𝑢𝑒  denotes actual class number or 

ground truth, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 denotes predicted class 

number by the model and 𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  is the 

number of predictions performed by the model. 

 

2.1 Deep Belief Network 
One variety of deep neural networks is the DBN that 

is made up of numerous limited Boltzmann machines 

stacked on top of each other. The RBM is a two-layer 

generative neural network with a visible layer v =
(𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑚)  and a hidden layer h =
(ℎ1, ℎ2, ℎ3, … , ℎ𝑛)   both of which are built on 

probabilistic binary units. The basic construction of an 

RBM is shown in Fig. 2, with n and m units in the hidden 

and visible layers, respectively. 

 

 

Fig. 2 Basic structure of a RBM with m 

visible nodes and n hidden nodes. 
 

An RBM is an energy-based model in which each 

layer's unit has an energy value assigned to it. As shown 

in Eq. (2), the energy function is defined as follows: 

 

𝐸(𝒗, 𝒉) =  − ∑ ∑ 𝑤𝑖𝑗𝑣𝑖ℎ𝑗 −  ∑ 𝑏𝑖𝑣𝑖

𝑚

𝑖=1

−  ∑ 𝑐𝑗ℎ𝑗

𝑛

𝑖=1

𝑛

𝑗=1

𝑚

𝑖=1

(2) 

 

where 𝑤𝑖𝑗  is the symmetric weight, 𝑣𝑖 , ℎ𝑗  are the 

binary states, and 𝑏𝑖 , 𝑐𝑗 are their biases, respectively. 

Pre-training and fine-tuning phases make up the 

RBM's training technique. Unsupervised learning is used 

to extract a deep hierarchical representation of training 

data in the pre-training phase by choosing the proper 

weights and biases, namely 𝑤 , 𝑏  and 𝑐 . The pre-

training phase's major goal is to find the best parameter set 

𝑤 , 𝑏  and 𝑐 , so that the energy function in Eq. (2) 

minimizes to a convergent state. It is more likely that the 

association (𝒗, 𝒉) with lesser energy exists. As a result, 

each correlation's likelihood is inversely proportional to 

its energy function: 

 

𝑃(𝒗, 𝒉) =  
𝑒−𝐸(𝒗,𝒉)

∑ 𝑒−𝐸(𝒗,𝒉)
𝒗,𝒉

(3) 

 

where ∑ 𝑒−𝐸(𝒗,𝒉)
𝒗,𝒉  represents a normalization factor. 

Hinton27) has suggested contrastive divergence (CD-k) as 

a faster training method for the DBN because it is 

computationally costly. According to the algorithm, 

𝑃(𝒉|𝒗) is used to forecast hidden values h for a given 

input vector v. 𝑃(𝒗|𝒉)  is then used to anticipate new 

visible units, v, based on the hidden values obtained. The 

conditional probabilities are computed using Eqs. (4) and 

(5), which are also known as alternating Gibbs sampling: 

 

𝑃(𝒗 = 𝟏|𝒉) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (∑ 𝑤𝑖𝑗
𝑇 ℎ𝑗 + 𝑏𝑖

𝑛

𝑗=1

) (4) 

 

𝑃(𝒉 = 𝟏|𝒗) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (∑ 𝑤𝑖𝑗
𝑇 𝑣𝑖 + 𝑐𝑗

𝑚

𝑖=1

) (5) 

 

where the sigmoid function is expressed as follows: 

 

𝑓𝑆(𝑥) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
(6) 

 

Samples (𝒗(𝑘), 𝒉(𝑘))  are guaranteed to be practical 

samples of 𝑃(𝑣 = 1|ℎ)  when the value of k is high 

enough. One-step sampling (CD-1) is used in this 

investigation since it is good enough to offer a realistic 

estimate. Computing the differences between data and 

reconstruction values yields the reconstruction error (∆W) 

and the weight matrix update, as stated in Eqs. (7) and (8): 

 

∆𝑊 =
1

𝑚
∑ (𝑣𝑚𝑖ℎ𝑚𝑗

(0)
 −  𝑣𝑚𝑖ℎ𝑚𝑗

(1)
)

𝑖,𝑗,𝑚

(7) 

 
𝑊 ←  𝛾𝑝𝑊 +  𝛼𝑝∆𝑊 (8) 

 

where m represents number of samples, 𝛾𝑝  is a 

momentum factor and 𝛼𝑝  is the learning rate. 

Correspondingly, biases b and c can be updated by 

convergently running one of these chains, as expressed in 

Eqs. (9) and (10): 

 

𝑏 =  𝛾𝑝𝑏 + 𝛼𝑝  
1

𝑚
 ∑ (𝑣𝑚𝑖

(0)
− 𝑣𝑚𝑖

(1)
)

𝑚

𝑚=1

(9) 

 

𝑐 =  𝛾𝑝𝑐 + 𝛼𝑝  
1

𝑚
 ∑ (𝑣𝑚𝑗

(0)
−  𝑣𝑚𝑗

(1)
)

𝑚

𝑚=1

(10) 

 

Following the pre-training phase can be used to fine-

tune the parameter sets W, b and c using the algorithm of 

backpropagation (BP). The training is done in this step in 

the same way that a NN is trained. Weights that are 

bidirectional can be transformed to unidirectional weights. 

The model training is substantially faster because the 
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parameters have already been initialized by unsupervised 

learning. Equations (11) and (12) show the parameter 

modifications in the NN: 

 

𝑊𝑁𝑁  ←  𝛾𝑓𝑊𝑁𝑁 −  𝛼𝑓

𝜕𝐸𝑟𝑟

𝜕𝑊𝑁𝑁

(11) 

 

𝑎 ←  𝛾𝑓𝑎 −  𝛼𝑓

𝜕𝐸𝑟𝑟

𝜕𝑊𝑁𝑁

(12) 

 

where 𝑊𝑁𝑁 presents the weight of the NN, 𝛾𝑝 and 

𝛼𝑝  present the momentum factor and the learning rate, 

respectively, and a is a bias for the fine-tuning phase. 

The overall structure of the DBN used in this study is 

illustrated in Fig. 3. 

 

 

Fig. 3 Structure of a deep belief network 

2.2 Particle Swarm Optimization 
 

With the advancement of machine intelligence, 

approaches such as random search, PSO, grid search, 

differential evolution (DE) and genetic algorithm (GA) 

can now be used to optimize hyperparameters of deep 

learning models. M. M. A. Wahab and et. al.28)have 

investigated optimization strategies in depth, and the 

analysis revealed that PSO approach is alike to the DE 

approach. 

The PSO method is made up of three key parameters: 

an overall experience (Gbest), a personal experience 

(Pbest), and the current movement of the particles in the 

search area to identify their next places. 

Based on the data, each particle adjusts its velocity and 

position as follow: 

 

𝑣𝑖𝑑
𝑘+1 = 𝑤 ∙ 𝑣𝑖𝑑

𝑘 +  𝑐1 ∙ 𝑟𝑎𝑛𝑑1 ∙ (𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑘 − 𝑝𝑖𝑑

𝑘 ) + 𝑐2

∙ 𝑟𝑎𝑛𝑑2 ∙ (𝑔𝑏𝑒𝑠𝑡𝑖𝑑
𝑘  −  𝑝𝑖𝑑

𝑘 ) 

𝑎𝑛𝑑 (14) 

𝑝𝑖𝑑
𝑘+1 =  𝑝𝑖𝑑

𝑘 +  𝑣𝑖𝑑
𝑘+1 

 

where 𝑣  represents the velocity of the 𝑖 th particle 

and 𝑑 expresses the a particle’s size in the 𝑘th iteration 

(1 ≤ 𝑑 ≤ 𝑛), 𝑟𝑎𝑛𝑑1  and 𝑟𝑎𝑛𝑑2  are random numbers 

in the range of [0, 1], 𝑐1 and 𝑐2 indicate personal and 

social learning factors, which are positive numbers, 

respectively and 𝑤 represents the weight of inertia. It is 

possible to balance the capacities of global and local 

exploration by using equation (15). 

 

𝑤𝑘 =  𝑤𝑚𝑎𝑥 − 
𝑤𝑚𝑎𝑥 −  𝑤𝑚𝑖𝑛

𝑡𝑚𝑎𝑥

 ∙  𝑡 (15) 

 

where 𝑤𝑚𝑎𝑥  indicates the weight of maximum inertia, 

𝑤𝑚𝑖𝑛 indicates the weight of maximum inertia and 𝑡 is 

the present iteration. The swarm size has been set to 5 and 

iterations have been set to 30 during the analysis. 

 

2.3 Time-Frequency Transformation 
Time and frequency representations of the machinery 

signal's energy can be revealed using time-frequency 

analysis. For machinery defect diagnostics, various time-

frequency transformations have been utilized, including 

empirical mode decomposition (EMD), wavelet transform 

(WT), STFT, and spectral kurtosis diagram (kurtogram). 

Among them, the STFT is frequently employed in time-

frequency analysis of a row vibration signal29-31). The 

STFT method transforms a time-domain signal to a time-

frequency-domain signal. It divides the large time-series 

signal into several the same size of pieces using 

windowing function and calculates fast Fourier transform 

coefficients (FFTs) for each piece. A matrix is used to 

store the calculated values that correspond to the segments. 

One of the benefits of STFT is that its results can be used 

immediately in the training of ML models. The STFT is 

expressed mathematically as follow: 

 

𝑆𝑇𝐹𝑇(, 𝑤) =  ∫ 𝑠(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

(16) 

 

where 𝑠(𝑡)  represents the time domain vibration 

signal, 𝑤(𝑡)  represents a windowing function, 𝑡 

represents time, and 𝜏  represents time index. STFT 

supports a variety of windowing functions, including 

triangular, rectangular, Hamm, Blackman, Kaiser, 

Gaussian, and Hann. When compared to the impacts of 

other windows, Hann windowing is often a nice select and 

is widely used with random data since it has a negligible 

effect on the frequency resolution and amplitude 

correctness of the resulting frequency spectrum32). As a 

result, in this investigation, the Hann windowing function 

is applied, which can be written as follows: 

 

ℎ(𝑡) = {
0.5 [1 − cos (

2𝜋𝑛

𝑀 − 1
)] , 0 ≤ 𝑛 ≤ 𝑀 − 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(17) 
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where 𝑛 is the time index and 𝑀 is the number of 

samples. 

The librosa open-source package in Python is used to 

conduct STFT on the vibration signal. The output is an 

𝑛𝑛_𝑓𝑓𝑡 × 𝑚𝑠  matrix with complex numbers, and the 

output's absolute values are used. The number of FFT 

coefficients for each window (𝑛_𝑓𝑓𝑡 = 1024) is given by 

𝑛_𝑓𝑓𝑡 . The following formula is used to determine  

𝑛𝑛_𝑓𝑓𝑡: 

 

𝑛𝑛𝑓𝑓𝑡
=  

𝑛𝑓𝑓𝑡

2
+ 1 (18) 

 

The hop size is set to 512. Following that, the 

spectrogram of the data is converted to 28x28 grayscale 

images. Each experiment has been repeated 20 times, with 

the average results have been used in the study. 

 

 

Fig. 4 Spectrogram of the vibration data (20 

Hz). 

 

Fig. 5 Spectrogram of the vibration data (30 

Hz). 

By using STFT analysis and sampling frequency data, 

the gearbox's time-domain signal can be converted into a 

time-frequency signal. The spectrograms for both the 20 

Hz and 30 Hz datasets are shown in Fig. 4 and Fig. 5, 

respectively. 

 

2.4 ML and DL Models Used for Comparative 

Study 
Support Vector Machine (SVM): SVM is a powerful 

supervised learning algorithm used for classification and 

regression tasks. It operates by finding the hyperplane that 

best separates data points belonging to different classes. 

SVM aims to maximize the margin between classes, 

defined as the distance between the hyperplane and the 

nearest data point of each class. SVM can handle high-

dimensional data effectively and is particularly useful 

when the data is not linearly separable by transforming it 

into a higher-dimensional space using the kernel trick. 

Decision Tree (DT): DTs are versatile models used for 

classification and regression. They represent decisions in 

a tree-like structure, where each node represents a 

decision based on a feature. DTs make decisions by 

recursively splitting the dataset based on features, creating 

a tree structure. The splits are chosen to maximize 

information gain or minimize impurity. One of the key 

advantages of DTs is their interpretability, allowing users 

to easily understand and visualize the decision-making 

process. 

k-Nearest Neighbors (KNN): KNN is a 

straightforward and intuitive algorithm for classification 

and regression. It classifies a data point based on the 

majority class of its k nearest neighbors in the feature 

space. KNN is a non-parametric and instance-based 

algorithm, making predictions directly from the training 

dataset. It is effective for tasks with complex decision 

boundaries. The choice of the parameter k influences the 

algorithm's performance, with smaller values making the 

model more sensitive to local fluctuations and larger 

values leading to smoother decision boundaries.  

DNN: DNN employed in this study was meticulously 

configured to capture intricate patterns within the dataset. 

The model was trained over 100 epochs, utilizing the 

Adam optimizer with a learning rate set at 0.001. The 

architecture comprises two hidden layers, each housing 

100 neurons. This configuration was chosen to strike a 

balance between model complexity and efficiency. The 

training process involved the iterative refinement of 

internal parameters through the backpropagation 

algorithm, enabling the DNN to learn hierarchical 

representations of features within the data. The use of two 

hidden layers with a considerable number of neurons 

facilitated the model's capacity to discern nuanced 

relationships present in the vibration signal dataset. 

CNN:  CNN employed in our research was 

intricately designed to extract spatial hierarchies from 

grid-structured data, particularly suitable for our vibration 

signal dataset. The model underwent training for 100 

epochs, employing the Adam optimizer with a learning 

rate of 0.001. The architectural design of the CNN is 

characterized by two convolutional layers, comprising 64 
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and 32 filters, respectively. Subsequently, two fully 

connected layers, each with 50 neurons, were incorporated 

to capture higher-level abstractions. This architectural 

choice was made to ensure the effective extraction of 

hierarchical features, promoting adaptability to the 

diverse patterns inherent in gearbox fault signals. 

Throughout the training process, the CNN iteratively 

learned relevant filters and weights through 

backpropagation, enhancing its capability to recognize 

complex patterns within the input data. The combination 

of convolutional and fully connected layers facilitated the 

model's ability to discern spatial hierarchies and 

relationships, contributing to its robust performance in 

fault diagnosis tasks. 

 

 

3. Experimental Procedure 

 
Two acceleration datasets, including an experimental 

gearbox and a wind turbine gearbox, are used in this study. 

Fig. 6 presents the experimental setup, and it is detailed 

in33). 

 

Fig. 6 Scheme of an experimental setup of 

the gearbox 
 

The analysis in this paper mainly focused on gear 

issues. Five separate gear’s row vibration signals are 

gathered during the data collecting process: healthy, crack 

on feet of gear, missing one foot of gear, wear on surface 

of gear and crack on gear root. For the fault diagnosis 

analysis, each gear situation is assigned a class. The test 

setup has eight sensors. The gearbox runs at 20 and 30 Hz. 

Sensors 1is for motor, while sensor 5 is torque sensors 

mounted on coupling part. And acceleration sensors 2, 3, 

and 4 are mounted on the planetary gearbox, while the rest 

of acceleration sensors are mounted on the parallel 

gearbox. Therefore, only sensors 1 and 5 are not employed 

to evaluate the suggested diagnosis approach. 2 000 Hz is 

used as the sampling frequency. 

 

4. Results and Discussion 

 
Instead of using a system that combines many sensors, 

this study examines the model that is suggested on a single 

sensor. Because not all sensors in practical applications 

offer a reliable signal for analysis, a multi-sensor fusion 

method may result in an appropriate diagnosis. As a result, 

the primary goal is to perform accurate problem 

identification with a single sensor. The impact of the 

DBN's hidden layer size on diagnosis performance is 

examined in this article, as the number of RBM is one of 

the elements that can lead the network to overfitting. 

Fig. 7 and Fig. 8 depict the proposed DBN model's 

diagnosis performance at 20 and 30 Hz, respectively. 

From the graphs, the DBN with 2 RBMs has a slightly 

lower performance compared to the rest of the DBNs. 

There is no discernible difference in the performance of 

DBNs with 3 RBMs and 4 RBMs. Therefore, the DBN 

with 3 RBMs is chosen for diagnosis because it takes less 

time to train for parameter and hyperparameter tuning. 

Overall accuracy of the optimized DBN is over 99.9% on 

the 20Hz dataset as shown in Fig. 7. 

 

 

Fig. 4 Diagnostic accuracy of the optimized 

DBN with different layer size (20 Hz). 

 

 

Fig. 5 Diagnostic accuracy of the optimized 

DBN with different layer size (30 Hz). 

 
The optimized DBN is also tested on the 30 Hz dataset. 

Fig. 8 illustrates the results of the test. The proposed 

model attains maximum level of performance accuracy of 

99.9% for sensors 2 and 8, while the lowest performance 

accuracy of 95% is observed in sensor 4. The overall 

performance is over at 95%, which is slightly lower than 

that of the 20 Hz dataset. 

 

4.1 Comparative Study of Traditional ML And 

DL Models 
Traditional fault diagnosis has been performed for the 

datasets. Each equation listed in Table 1 is considered as 

one feature. So, overall, thirteen statistical features are 

obtained from each 1024 data points of the row vibration 
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signal. These feature vectors are used as an input to 

traditional ML and DL models. 

 

Table 1 Features from the row vibration signal. 

Parameter Equation 

Mean 𝑇1 =
∑ 𝑠(𝑡)𝑁

𝑛=1

𝑁
 

Standard deviation 𝑇2 = √
∑ (𝑠(𝑡) − 𝑇1)2𝑁

𝑛=1

𝑁 − 1
 

Variance 𝑇3 = (
∑ √|𝑠(𝑡)|𝑁

𝑛=1

𝑁
)

2

 

RMS 𝑇4 = √
∑ (𝑠(𝑡))2𝑁

𝑛=1

𝑁
 

Absolute maximum 𝑇5 = max |𝑠(𝑡)| 

Coefficient of skewness 𝑇6 =
∑ (𝑠(𝑡) − 𝑇1)3𝑁

𝑛=1

(𝑁 − 1)(𝑇2)3
 

Kurtosis 𝑇7 =
∑ (𝑠(𝑡) − 𝑇1)4𝑁

𝑛=1

(𝑁 − 1)(𝑇2)4
 

Crest factor Margin 𝑇8 =
𝑇5

𝑇4
 

Margin factor 𝑇9 =
𝑇5

𝑇3
 

Shape factor 𝑇10 =
𝑇4

1
𝑁

∑ |𝑠(𝑡)|𝑁
𝑛=1

 

Impulse factor 
𝑇11 =

𝑇5

1
𝑁

∑ |𝑠(𝑡)|𝑁
𝑛=1

 

A factor 𝑇12 =
𝑇5

𝑇2 ∙ 𝑇3
 

B factor 𝑇13 =
𝑇7 ∙ 𝑇8

𝑇2
 

where 𝑠(𝑡)  represents the time domain vibration 

signal. 

 

In this investigation, SVM, DT and KNN traditional 

ML classifiers are used. Gini diversity index is used for 

the split criterion in DT model. For the SVM model, a 

radial basis kernel function is used, while KNN model's 

hyperparameter is Euclidean distance. Thereafter, two DL 

models such as DNN and CNN are chosen for 

comparative analysis. Six different categories of data are 

obtained from sensors at various positions and are used to 

test the models. All results of the comparative study for 20 

Hz and 30 Hz datasets are listed in Table 2 and Table 3 

respectively. It can be noted that from Table 2 and 3 there 

is no notable differences in the diagnostic accuracy of the 

traditional ML models. The SVM model, which uses the 

sensor 2 input for the 20 Hz data set and the sensor 6 input 

for the 30 Hz data set, achieves the best diagnosis results. 

The models' accuracy varies from 67% to 85%. The 

traditional ML models generate inaccurate diagnosis 

results when compared to the proposed DBN model 

system. 

On the other hand, a slight increase is observed in DL 

models, especially the CNN model, when compared to 

traditional ML models. The CNN model achieves the 

highest performance accuracy in the sensor 2 input for the 

20 Hz data set and the sensor 6 input for the 30 Hz data 

set. Due to its poor performance on sensor 4 (30 Hz), DNN 

is inadequate for these data sets. Meanwhile, the proposed 

optimized DBN model achieves 95.5% to 99.9% accuracy, 

which is higher than that of traditional ML and DL models 

by 10 to 20%. 

 

Table 2 Comparative diagnosis performance 

of ML and DL models (20 Hz) 

Sensors DT SVM KNN DNN 
 

CNN 
Proposed 

DBN 

Sens. 2 85.2% 85.3% 79.8% 80.3%  87.8% 99.9% 

Sens. 3 84.8% 85.1% 80.1% 86.6%  81.5% 99.9% 

Sens. 4 84.9% 84.9% 83.1% 84.5%  84.1% 99.9% 

Sens. 6 77.3% 84.8% 75.2% 81.1%  77.3% 99.5% 

Sens. 7 80.1% 83.7% 80.2% 75.4%  81.6% 96.8% 

Sens. 8 79.8% 82.9% 80.0% 79.6%  85.2% 99.8% 

 

Table 3 Comparative diagnosis performance 

of ML and DL models (30 Hz) 

Sensors DT SVM KNN DNN CNN 
Proposed 

DBN 

Sens. 2 82.1% 82.5% 80.3% 77.5% 80.6% 99.9% 

Sens. 3 77.8% 82.2% 78.6% 66.9% 79.7% 99.5% 

Sens. 4 76.9% 79.9% 77.3% 80.5% 81.4% 95.5% 

Sens. 6 77.2% 83.1% 81.8% 76.2% 82.3% 99.3% 

Sens. 7 69.8% 67.5% 69.2% 63.8% 78.7% 99.2% 

Sens. 8 77.7% 79.8% 78.2% 65.9% 84.0% 99.9% 

 

To learn how the model responds to training data of 

various sizes, the datasets are split into different train-test 

samples, including 80%-20%, 50%-50% and 20%-80% 

and the optimized DBN model is evaluated. The result of 

the test is shown in Table 4. According to the table, there 

is no significant difference between all partitions in 

diagnosis accuracy of the proposed optimized DBN model. 

The lowest diagnosis performance accuracy of 91.5% is 

observed for sensor 4 of the 30 Hz dataset, while the 

highest trend is seen for sensor 3 of the 30 Hz dataset, 

when the dataset makes up a partition of 20%-80%. It 

means that the model can also perform satisfaction 

diagnosis performance on a small dataset. It has been 

proven that the optimized DBN model has a strong 

capacity to extract and represent features. 

 

Table 4 Diagnostic accuracy of the proposed 

DBN model in different partitions of the 

dataset 

Sensors 

80%-
20% 

(20 

HZ) 

50%-
50% 

(20 

Hz) 

20%-
80% 

(20 

Hz) 

80%-
20% 

(30 

Hz) 

50%-
50% 

(30 

Hz) 

20%-80% 

(30 Hz) 

Sens. 2 82.1% 82.5% 80.3% 77.5% 80.6% 99.9% 
Sens. 3 77.8% 82.2% 78.6% 66.9% 79.7% 99.5% 

Sens. 4 76.9% 79.9% 77.3% 80.5% 81.4% 95.5% 

Sens. 6 77.2% 83.1% 81.8% 76.2% 82.3% 99.3% 
Sens. 7 69.8% 67.5% 69.2% 63.8% 78.7% 99.2% 

Sens. 8 77.7% 79.8% 78.2% 65.9% 84.0% 99.9% 

 

4.2 Analysis On Wind Turbine Gearbox 
In order to provide strong evidence, the proposed 

optimized DBN model is tested on the actual gearbox of a 

wind turbine. There are two different types of row 

vibration signals in the dataset: healthy and unhealthy 
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