• 제목/요약/키워드: Robust $H_{\infty}$ Control

검색결과 424건 처리시간 0.034초

외란관측기를 바탕으로 $H_{\infty}$제어 방법을 이용한 수중 로봇 팔의 원격조종 제어기 설계 (Teleoperation Controller Design for an Underwater Manipulator Using an $H_{\infty}$ Control Scheme Based on Disturbance Observer)

  • 유지환;권동수;이판묵;홍석원
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.578-585
    • /
    • 2000
  • This paper presents a robust and systematic bilateral controller design method for a teleoperation of an underwater manipulator. Disturbance observer is used as a local controller of the master and underwater slave manipulator to set up the teleoperation system as a nominal model by compensating coupled nonlinear terms model uncertainties and external disturbances in the water. Using the linearized master/slave model a $H_{\infty}$ optimal control scheme is applied to systematically construct a force reflecting bilateral controller.

  • PDF

차량 성능 및 안정성 향상을 위한 $H_{\infty}$ 요 모멘트 강인제어 ($H_{\infty}$ Robust Yaw-Moment Control Based on Brake Switching for the Enhancement of Vehicle Performance and Stability)

  • 안우성;박종현
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1899-1909
    • /
    • 2000
  • This paper proposes a new $H_{\infty}$ yaw moment control scheme using brake torque switching for improving vehicle performance and stability especially in high speed driving. In the scheme, one wheel is selected, depending on the vehicle states, at which a brake torque for control is applied. Steering angles are modeled as a disturbance to the system and the $H_{\infty}$ controller is designed to minimize the difference between the performance of the vehicle and that of the desired model. Its performance robustness as well as stability robustness to system parameter variations is assured through ${\mu}$-analysis. Various simulations with a nonlinear 8-DOF vehicle model show that proposed controller enhances the vehicle performance and stability under disturbances and parameter variations as well as under the normal driving condition.

불확실한 주파수의 정현파 외란이 있는 기록형 광 디스크 드라이브의 강인 제어 (Robust Control for the Rewritable Optical Disk Drives with Sinusoidal Disturbance of Uncertain Frequencies)

  • 이문노;진경복;문정호
    • 제어로봇시스템학회논문지
    • /
    • 제8권8호
    • /
    • pp.682-690
    • /
    • 2002
  • This paper presents an output feedback controller design method for uncertain linear systems with sinusoidal disturbance of uncertain frequencies. The controller needs to compensate for the performance deterioration due to the uncertain frequencies of sinusoidal disturbance. To this end, we introduce a virtual system including the dynamics corresponding to the uncertain frequencies and design a controller which minimizes the output difference between the virtual system and the closed-loop system. In other words, the controller is designed so that the closed-loop system approximates the virtual system. The feedback controller is achieved by solving an LMI optimization problem involving a robust $H_{\infty}$ constraint. The advantages of the proposed design method are examined by comparing it with a design method that only minimizes the $H_{\infty}$ norm of the transfer function between the sinusoidal disturbance and the output. The proposed design method is applied to the track-following system of rewritable optical disk drives and is evaluated through an experiment.

Vehicle Lateral Stability Management Using Gain-Scheduled Robust Control

  • You, Seung-Han;Jo, Joon-Sang;Yoo, Seung-Jin;Hahn, Jin-Oh;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1898-1913
    • /
    • 2006
  • This paper deals with the design of a yaw rate controller based on gain-scheduled H$\infty$ optimal control, which is intended to maintain the lateral stability of a vehicle. Uncertain factors such as vehicle mass and cornering stiffness in the vehicle yaw rate dynamics naturally call for the robustness of the feedback controller and thus H$\infty$ optimization technique is applied to synthesize a controller with guaranteed robust stability and performance against the model uncertainty. In the implementation stage, the feed-forward yaw moment by driver's steer input is estimated by the disturbance observer in order to determine the accurate compensatory moment. Finally, HILS results indicate that the proposed yaw rate controller can satisfactorily improve the lateral stability of an automobile.

$H_2/H_{\infty}$ 제어기를 이용한 슬라이eld 모드제어 (Sliding Mode Control Using $H_2/H_{\infty}$ Controller)

  • 박승규;곽군평;김민찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.612-614
    • /
    • 1999
  • In this paper a novel sliding mode control is proposed by using $H_2/H_{\infty}$ controller. this technique is constructed based on the augmented system with a virtual state and make it has the dynamics of the original system and then $H_2/H_{\infty}$ controller has robust characteristics of sliding mode control for existing parameter uncertainty. The reaching phase is excluded by setting initial virtual state value appropriately.

  • PDF

매개변수 불확실성을 가지는 특이시스템의 강인 관측기 기반 $H_\infty$ 제어기 설계방법 (Robust Observer-based $H_\infty$ Controller Design Method for Singular Systems with Parameter Uncertainties)

  • 김종해;안성준;안승준;오도창;지경구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권1호
    • /
    • pp.11-16
    • /
    • 2005
  • This paper considers a robust observer-based H/sub ∞/ controller design method for singular systems with parameter uncertainties using an LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by a perfect LMI condition in terms of all variables using singular value decomposition, Schur complement, and change of variables. Therefore, one of the main advantages is that a robust observer-based H/sub ∞/ controller can be established by solving one LMI condition compared with existing results. Numerical example is given to illustrate the effectiveness of the proposed controller design method.

$H_{\infty}$필터를 이용한 2관성 공진계의 2자유도제어 (Two-Degree-of-Freedom Control of Two-Mass Resonant System using $H_{\infty}$ Filer)

  • 김진수;강석진;신재화;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.515-517
    • /
    • 1997
  • In the industrial motor drive system, a shaft torsional vibration is often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of such a system. In this paper, two-degree-of-freedom(TDOF) control of the two-mass resonant system using the $H_{\infty}$ filter is proposed. TDOF control method satisfies the command following property and the internal stability at the same. The $H_{\infty}$ filter is robust in noise and disturbance. Simulation results show the validity of the proposed control method.

  • PDF

하중 혼합감도함수를 이용한 RTP 시스템의 견실제어기 설계 (Robust controller design for RTP system using weighted mixed sensitivity minimization)

  • 이상경;오도창;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.434-437
    • /
    • 1997
  • In this paper, we present an $H^{\infty}$ controller design of RTP system satisfying robust stability and performance using weighted mixed sensitivity minimization. In industrial fields, RTP system is widely used for improving the oxidation and the annealing in semiconductor manufacturing process. The main control factors are temperature control of wafer and uniformity in the wafer. The control of temperature and uniformity has been solved by PI control method. We improve robust stability and performance of RTP system by the design of $H^{\infty}$ controller using the weighted mixed sensivity function. An example is proposed to show the validity of proposed method.d.

  • PDF

LMI-Based Synthesis of Robust Iterative Learning Controller with Current Feedback for Linear Uncertain Systems

  • Xu, Jianming;Sun, Mingxuan;Yu, Li
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.171-179
    • /
    • 2008
  • This paper addresses the synthesis of an iterative learning controller for a class of linear systems with norm-bounded parameter uncertainties. We take into account an iterative learning algorithm with current cycle feedback in order to achieve both robust convergence and robust stability. The synthesis problem of the developed iterative learning control (ILC) system is reformulated as the ${\gamma}$-suboptimal $H_{\infty}$ control problem via the linear fractional transformation (LFT). A sufficient convergence condition of the ILC system is presented in terms of linear matrix inequalities (LMIs). Furthermore, the ILC system with fast convergence rate is constructed using a convex optimization technique with LMI constraints. The simulation results demonstrate the effectiveness of the proposed method.

자기부상 시스템의 강인한 제어기 설계에 관한 연구(I) -시뮬레이션을 중심으로- (A Study on the Design of Robust Simulation Controller of Magnetic Levitation System(I))

  • 양주호;김창화;정석권;김영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권3호
    • /
    • pp.84-90
    • /
    • 1995
  • The magnetic levitation system has great advantages, such as little friction, no lubrication no noise and so on. The magnetic levitation system need a stabilizing controller because it is a unstable system in natural. This paper presents the robust stabilizing controller design of the magnetic levitation system. The controller which is designed in this paper by $H_{infty}$ control theory is robust servo controller which has zero offset in spite of the model uncertainties. The validity of controller was investigater through the response simulation. In the future, we will use the result of this study at the actual magnetic levitation system.

  • PDF