• Title/Summary/Keyword: Robot-automation

Search Result 630, Processing Time 0.027 seconds

A Study on Development and Application of Real Time Vision Algorithm for Inspection Process Automation (검사공정 자동화를 위한 실시간 비전알고리즘 개발 및 응용에 관한 연구)

  • Back, Seung-Hak;Hwang, Won-Jun;Shin, Haeng-Bong;Choi, Young-Sik;Park, Dae-Yeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • This study proposes a non-contact inspective technology based robot vision system for Faulty Inspection of welding States and Parts Shape. The maine focus is real time implementation of the machining parts' automatic inspection by the robotic moving. For this purpose, the automatic test instrument inspects the precision components designator the vision system. pattern Recognition Technologies and Precision Components for vision inspection technology and precision machining of precision parts including the status and appearance distinguish between good and bad. To perform a realization of a real-time automation integration system for the precision parts of manufacturing process, it is designed a robot vision system for the integrated system controller and verified the reliability through experiments. The main contents of this paper, the robot vision technology for noncontact inspection of precision components and machinery parts is useful technology for FA.

A Study on Precise Position Control of Articulated Arm for Manufacturing Process Automation (제조공정자동화를 위한 다관절 아암의 정밀위치제어에 관한 연구)

  • Park, In-Man;Koo, Young-Mok;Jo, Sang-Young;Yang, Jun-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.181-190
    • /
    • 2015
  • This paper presents a new approach to control the position of robot arm in workspace a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme was applied. Since parameters of the robot arm such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters was considered as a external disturbance force. To identify the known parameters, an improved robust control algorithm is directly derived from the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing forces coming from the difference between the actual and the estimated system parameters. Numerical examples are shown using SCARA arm with four joints.

Introduction to the Intelligent Excavating System: Concept design of Intuitive Operator Control Unit (지능형 굴삭시스템 개발: 직감형 원격제어 시스템 개념설계)

  • Yu, Byung-Gab;Lee, Seung-Yeol;Lee, Sang-Ho;Yu, Seok-Jong;Yu, Bo-Hyun;Jang, June-Hyun;Han, Chang-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.68-73
    • /
    • 2007
  • Civil engineering construction work has always been accompanied by a high proportion of tasks that are either dangerous or unpleasant or both. Enhancing the general working environment and boosting safety levels are critical issues for the industry. In addition to that, the industry has been slow to utilize automation & robot technology, and there is substantial scope for the use of technology th boost efficiency, cut costs and improve quality levels in construction. In a bid to address this issue, Ministry of Construction & Transportation launched a five-year project in 2003 entitled Development of Intelligent Excavating System. The aim of the project is to use telecommunications and robotics technology to minimize inefficiencies and eliminate the dangerous and unpleasant aspects of tile construction process through the development of specific applications such as IT-equipped construction machinery and advanced construction management systems. In this paper, the project introduces on the research and development content related to multi-disciplinary, a intuitive operator control unit(Robot Technology) included.

  • PDF

Real-time Synchronization Between Two Industrial Dual-arm Robots (두 개의 산업용 양팔로봇간의 실시간 동기화 방법)

  • Choi, Taeyong;Kyung, Jinho;Do, Hyunmin;Park, Chanhun;Park, Dongil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1027-1033
    • /
    • 2016
  • There is an increasing need for manufacturing systems to produce batches in small quantities. Such manufacturing systems are significantly difficult to develop with conventional automation equipment. Recently, several research groups have applied industrial dual-arm robots to cell production lines. A synchronization method for robots is necessary for the cell production process when robots work in a shared workspace. Conventional automation factories do not need this method because the main control system operates all of the machines or robots. However, our intended application for the developed robot is in small manufacturing environments that cannot install an expensive main control system. We propose an inexpensive and high-performance method with a simple digital in/out channel using a real-time communication protocol. The developed method was validated in a pilot production line for cellular phone packing.

Development of Electromagnet wheel for Vertical wall-climbing Mobile Robot (수직벽면 작업용 이동형 플랫폼 장치의 전자석 휠 개발)

  • Kim J.H.;Chung W.J.;Kim H.G.;Kim S.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.740-743
    • /
    • 2005
  • Most works of the large vertical ceiling structures have been performed by human manually. These works require much more operation costs, labors and times, etc. Beside most people avoid this works because of it's characteristic such as danger, dirty and difficulty. So necessity of automation for these works has been rising. This automation needs a wall climbing mobile vehicle because of the movement of platform large workspace. In this study, we aim at develop the wheel which can be used for vertical wall-climbing mobile robot using electromagnet wheel. The wheel proposed can be available for several working processes on structures which consist magnetic substance.

  • PDF

The Analysis of Vibration on the Guide Rail Installed with Manufacturing System of the Smart Phone Lens (스마트폰 렌즈 생산시스템에 장착된 가이드 레일에 관한 진동해석)

  • Kim, Young-Choon;Cho, Jae-Ung;Joung, Woon-Se
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2539-2544
    • /
    • 2014
  • As the production of electronic goods increases, poor products increase. Smart phone lens has much probability of breakage due to vibration happened at machine during the procedure of production. At this study model of smart phone, robot installed at guide rail is applied by various load according to its mass and investigated with vibration analysis. The analysis result in this study is thought to supply the material necessary at safe design and development on manufacturing machine system of smart phone lens by assembled automation.

A Research to realize a smart logistics warehouse system using 5G-based Logistics Automation Robot (5G 기반 물류 자동화 로봇을 활용한 스마트 물류 창고 시스템 구현을 위한 연구)

  • Park, Tae-uk;Yoon, Mahn-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.532-534
    • /
    • 2022
  • At a time when the 5G era is advancing beyond commercialization, places that used to handle simple logistics warehouse tasks are transforming into smart logistics warehouses by combining IT convergence technology and platforms. Smart logistics warehouses can accurately predict demand and inventory of products with AI, deep learning, and robot technologies based on 5G, and provide information on warehousing and warehousing status in real time. As the e-commerce market grows, the smart logistics sector is also growing rapidly. This paper implements a smart logistics warehouse system and studies and proposes a method of establishing a fast and accurate logistics system by utilizing 5G-based Logistics Automation Robot.

  • PDF

Digital Customized Automation Technology Trends (디지털 커스터마이징 자동화 기술 동향)

  • Song, Eun-young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.790-798
    • /
    • 2021
  • With digital technology innovation, increased data access and mobile network use by consumers, products and services are changing toward pursuing differentiated values for personalization, and personalized markets are rapidly emerging in the fashion industry. This study aims to identify trends in digital customized automation technology by deriving types of digital customizing and analyzing cases by type, and to present directions for the development of digital customizing processes and the use of technology in the future. As a research method, a literature study for a theoretical background, a case study for classification and analysis of types was conducted. The results of the study are as follows. The types of digital customizing can be classified into three types: 'cooperative customization', 'selective composition and combination', 'transparent suggestion', and automation technologies shown in each type include 3D printing, 3D virtual clothing, robot mannequin, human automatic measurement program, AR-based fitting service, big data, and AI-based curation function. With the development of digital automation technology, the fashion industry environment is also changing from existing manufacturing-oriented to consumer-oriented, and the production process is rapidly changing with IT and artificial intelligence-based automation technology. The results of this study hope that digital customized automation technology will meet various needs of personalization and customization and present the future direction of digital fashion technology, where fashion brands will expand based on the spread of digital technology.

The Origin of Artificial Species: Genetic Robot

  • Kim Jong-Hwan;Lee Kang-Hee;Kim Yong-Duk
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.564-570
    • /
    • 2005
  • This paper provides a basis for investigating 'The Origin of Artificial Species,' as a robot can be considered as an artificial creature. To design an artificial creature, its general internal architecture is presented and its artificial chromosomes are proposed as its essential components. Rity as an artificial creature is developed in a virtual world of PC to test the world's first robotic 'chromosomes,' which are a set of computerized DNA (Deoxyribonucleic acid) codes for creating robots (artificial creatures) that can have their own personality, and can ultimately reproduce their kind, or even evolve as a distinct species. The effectiveness of the artificial chromosomes is demonstrated by implanting the genetic code into two Ritys living in a virtual world, in order to define their personality.