• 제목/요약/키워드: Robot vehicle

검색결과 378건 처리시간 0.026초

감시경계 로봇의 그래픽 사용자 인터페이스 설계 (A Graphical User Interface Design for Surveillance and Security Robot)

  • 최덕규;이춘우;이춘주
    • 로봇학회논문지
    • /
    • 제10권1호
    • /
    • pp.24-32
    • /
    • 2015
  • This paper introduces a graphical user interface design that is aimed to apply to the surveillance and security robot, which is the pilot program for the army unmanned light combat vehicle. It is essential to consider the activities of robot users under the changing security environment in order to design the efficient graphical user interface between user and robot to accomplish the designated mission. The proposed design approach firstly identifies the user activities to accomplish the mission in the standardized scenarios of military surveillance and security operation and then develops the hierarchy of the interface elements that are required to execute the tasks in the surveillance and security scenarios. The developed graphical user interface includes input control component, navigation component, information display component, and accordion and verified by the potential users from the various skilled levels with the military background. The assessment said that the newly developed user interface includes all the critical elements to execute the mission and is simpler and more intuitive compared to the legacy interface design that was more focused on the technical and functional information and informative to the system developing engineers rather than field users.

스테레오 영상을 활용한 3차원 지도 복원과 동적 물체 검출에 관한 연구 (A Study of 3D World Reconstruction and Dynamic Object Detection using Stereo Images)

  • 서보길;윤영호;김규영
    • 한국산학기술학회논문지
    • /
    • 제20권10호
    • /
    • pp.326-331
    • /
    • 2019
  • 실제 환경에서는 움직이지 않는 정적 물체만큼이나 많은 수의 움직이는 동적 물체가 존재한다. 사람은 정적 물체와 동적 물체를 쉽게 구분할 수 있지만, 자율 주행 차량이나 모바일 로봇은 이를 구분하지 못한다. 따라서 차량이나 로봇이 성공적이고 안정적인 자율 주행을 수행하기 위해서는 정적 물체와 동적 물체를 정확하게 구분하는 것이 중요하다. 이를 수행하기 위해서 자율 주행 차량이나 모바일 로봇은 카메라, 라이다 등과 같은 다양한 센서 시스템을 활용할 수 있다. 그중에서 스테레오 카메라 영상은 자율 주행을 위해 많이 활용하는 데이터이다. 스테레오 카메라 영상은 물체 분할, 분류, 추적과 같은 물체 인식 분야는 물론 3차원 지도 복원과 같은 네비게이션 분야에 활용할 수 있다. 본 연구에서는 실시간으로 주행하는 차량과 로봇을 위하여 스테레오 영상을 활용한 정적/동적 물체 구분 방법을 제안하고, 향후 네비게이션 목적으로도 활용할 수 있도록 3차원 지도를 복원하여 이를 적용한 결과 및 성능 확인을 위한 정확도 분석 결과(99.81%)를 제시한다.

수중 벽면 주행 기구의 설계 (The design of wall-climbing underwater robot system)

  • 김병만;김경훈;박영수;박기용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.237-240
    • /
    • 1997
  • The design of underwater inspection robot system is presented. This robot system is designed for wall inspection in the nuclear plant facility. This paper describes the major components of the robot and its structures. This robot system is consisted of three parts : mechanical electrical and sensing pail. The main problem of designing mechanical part is to select the mechanism of driving. In this system the propeller driving mechanism is selected which can be move the robot continuously. For reducing the size of robot, we designed the CPU and motor controller board. The sensor system is consisted of two parts. One is environment monitoring part and the other is robot localization system.

  • PDF

도심자율주행을 위한 라이다 정지 장애물 지도 기반 차량 동적 상태 추정 알고리즘 (LiDAR Static Obstacle Map based Vehicle Dynamic State Estimation Algorithm for Urban Autonomous Driving)

  • 김종호;이호준;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.14-19
    • /
    • 2021
  • This paper presents LiDAR static obstacle map based vehicle dynamic state estimation algorithm for urban autonomous driving. In an autonomous driving, state estimation of host vehicle is important for accurate prediction of ego motion and perceived object. Therefore, in a situation in which noise exists in the control input of the vehicle, state estimation using sensor such as LiDAR and vision is required. However, it is difficult to obtain a measurement for the vehicle state because the recognition sensor of autonomous vehicle perceives including a dynamic object. The proposed algorithm consists of two parts. First, a Bayesian rule-based static obstacle map is constructed using continuous LiDAR point cloud input. Second, vehicle odometry during the time interval is calculated by matching the static obstacle map using Normal Distribution Transformation (NDT) method. And the velocity and yaw rate of vehicle are estimated based on the Extended Kalman Filter (EKF) using vehicle odometry as measurement. The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment, and is verified with data obtained from actual driving on urban roads. The test results show a more robust and accurate dynamic state estimation result when there is a bias in the chassis IMU sensor.

무인수상정을 위한 경로선 추종이 가능한 개선된 Dynamic Window Approach (Improved Dynamic Window Approach With Path-Following for Unmanned Surface Vehicle)

  • 김효곤;윤성조;최영호;이정우;유재관;원병재;서진호
    • 대한임베디드공학회논문지
    • /
    • 제12권5호
    • /
    • pp.295-301
    • /
    • 2017
  • Recently, autonomous navigation technology, obstacle recognition, and obstacle collision avoidance technology are actively being developed for an unmanned surface vehicle (USV). The path to move from the current location to the destination should be planned, in order for an USV to autonomously operate safely to its destination. The dynamic window approach (DWA) is a well-known navigation scheme as a local path planning. The DWA algorithm derives the linear velocity and angular velocity by evaluating the destination direction, velocity, and distance from the obstacle. However, because DWA algorithm does not consider tracking the path, when using only the DWA algorithm, the ship may navigate away from the path line after avoiding obstacles. In this paper, we propose an improved DWA algorithm that can follow path line. And we implemented the simulation and compared the existing DWA algorithm with the improved DWA algorithm proposed in this paper. As a result, it is confirmed that the proposed DWA algorithm follows the path line better.

DRC Finals 2015 에서 휴머노이드 로봇의 자동차 운전과 하차에 관한 전략 (Strategies for Driving and Egress for the Vehicle of a Humanoid Robot in the DRC Finals 2015)

  • 안동현;신주성;전용범;손기원;장기호;폴오;조백규
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.912-918
    • /
    • 2016
  • This paper presents various strategies for humanoid vehicle driving and egress tasks. For driving, a tele-operating system that controls a robot based on a human operator's commands is built. In addition, an autonomous assistant module is developed for the operator. Normal position control can result in severe damage to robots when they egress from vehicles. To prevent this problem, another approach that mixes various joint control techniques is adopted in this study. Additionally, a footplate is newly designed and attached to the vehicle floor for the ground landing phase of the egress task. The attached plate enables the robot to step down onto the ground in a safe manner. For stable locomotion, a balance controller is designed for the humanoid. For the design of the controller, the robot is modeled using an inverted pendulum that consists of a spring and a damper. Then, a state feedback controller (with pole placement and a state observer) is built based on the simplified model. Many approaches that are presented in this paper were successfully applied to a full-sized humanoid, DRC-HUBO+, in the DARPA Robotics Challenge Finals, which were held in the United States in 2015.

틸트-덕트 수직이착륙 비행로봇의 동력계통 개발 (Development of Power System for the Tilt-duct VTOL Aerial Robot)

  • 장성호;조암;이치훈;최성욱
    • 항공우주기술
    • /
    • 제13권2호
    • /
    • pp.1-6
    • /
    • 2014
  • 본 논문은 틸트-덕트 수직이착륙 비행로봇을 위한 동력계통의 설계, 개발 및 시험 결과를 기술한다. 본 연구에서는 R/C 모터보트에 적용되는 소형 수냉식 엔진을 이용하여 비행로봇의 탑재 및 비행체와 인터페이스에 대한 하드웨어 개발 사항을 기술하였다. 또한 지상시험과 안전줄 시험을 통해 비행체의 추력 성능을 측정하고 동력계통의 내구성 결과가 제시되었다.

무인지상차량을 위한 GPS와 DR을 이용한 항법시스템 (GPS and DR Navigation System for Unmanned 9round Vehicle)

  • 박대선;박정훈;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.75-75
    • /
    • 2000
  • Recently, number of navigation system using GPS and other complementary sensors has been developed to offer high-position accuracy. In this paper, an integration of GPS and Dead-Reckoning, which consists of a fiber optical gyroscope and two high-precision wheel-motor encoders for a unmanned navigation system, is presented. The main objective of this integrated GPS/DR unmanned navigation system is to provide accurate position and heading navigation data continuously for autonomous mobile robot. We propose a method for increasing the accuracy of the estimated position of the mobile robot by its DR sensors, high-precision wheel-motor encoders and a fiber optical gyroscope. We used Kalman filter theory to combine GPS and DR measurements. The performance of GPS/DR navigation system is evaluated.

  • PDF

모바일 경계로봇의 안정화 시스템 테스트를 위한 병렬로봇의 개발 (Development of a Parallel Robot for Testing a Mobile Surveillance Robot Stabilization System)

  • 김도현;권정주;김성수;최희병;박성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.735-738
    • /
    • 2008
  • A 6 D.O.F Stewart platform type parallel robot has been developed as a simulator to test the surveillance robot stabilization control. Since the surveillance robot is installed on the unmanned ground vehicle (UGV), it is required to have a stabilization control system to compensate the disturbance from the UGV. PID control scheme has been applied to the parallel robot to generate controlled motion following the input motion.

  • PDF

센서 스캐닝에 의한 자율주행로봇의 경로주행 알고리즘 (A Path Navigation Algorithm for an Autonomous Robot Vehicle by Sensor Scanning)

  • 박동진;안정우;한창수
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.147-154
    • /
    • 2002
  • In this paper, a path navigation algorithm through use of a sensor platform is proposed. The sensor platform is composed of two electric motors which make panning and tilting motions. An algorithm for computing a real path and an obstacle length is developed by using a scanning method that controls rotation of the sensors on the platform. An Autonomous Robot Vehicle(ARV) can perceive the given path by adapting this algorithm. A sensor scanning method is applied to the sensor platform for using small numbers of sensor. The path navigation algorithm is composed of two parts. One is to perceive a path pattern, the other is used to avoid an obstacle. An optimal controller is designed for tracking the reference path which is generated by perceiving the path pattern. The ARV is operated using the optimal controller and the path navigation algorithm. Based on the results of actual experiments, this algorithm for an ARV proved sufficient for path navigation by small number of sensors and for a low cost controller by using the sensor platform with a scanning method.