• 제목/요약/키워드: Robot trajectory planning

검색결과 187건 처리시간 0.023초

스프레이 페인팅 작업을 위한 일관화된 로보트 궤적계획법에 관한 연구 (An Integrated Robot-Trajectory-Planning Scheme for Spray Painting Operations)

  • 서석환;우인기
    • 산업공학
    • /
    • 제3권2호
    • /
    • pp.23-38
    • /
    • 1990
  • The use of robots for painting operations is a powerful alternative as a means for automation and quality improvement. A typical method being used for motion planning of the painting robot is to guide the robot along the desired path : the "lead-through" method. Although this method is simple and has been widely used, it has several drawbacks a) The robot cannot be used during the teaching period, b) A human is exposed to a hostile environment, c) The motions taught are, at best, human's skill level. To deal with the above problems, an integrated robot-trajectory planning scheme is presented. The new scheme takes CAD data describing the shape and geometry of the objects, and outputs an optimal trajectory in the sense of coating thickness and painting time. The purpose of this paper is to investigate theoretical backgrounds for such a scheme including geometric modeling, painting mechanics and robot trajectory planning, and develop algorithms for generating spray gun paths and minimum-time robot trajectories. Future study is to implement these algorithms on an workstation to develop an integrated software system ; ATPS(Automatic Trajectory Planning System) for spray painting robots.

  • PDF

직교좌표공간에서의 스플라인을 이용한 산업용 로봇의 궤적 생성 방법 (Trajectory Planning of Industrial Robot using Spline Method in Task Space)

  • 정성엽;황면중
    • 융복합기술연구소 논문집
    • /
    • 제6권2호
    • /
    • pp.9-13
    • /
    • 2016
  • Robot usually requires spline motion to move through multiple knots. In this paper, catmull-rom spline method is applied to the trajectory planning of industrial robot in task space. Centripetal catmull-rom is selected to avoid self-intersection and slow motion which can be occurred in uniform and chordal spline. The method to set two control points are proposed to satisfy velocity conditions of initial and final knots. To optimize robot motion, time scaling method is presented to minimize margin between real robot value and maximum value in velocity and acceleration. The simulation results show that the proposed methods are applied to trajectory planning and robot can follow the planned trajectory while robot motion does not exceed maximum value of velocity and acceleration.

Online Trajectory Planning for a PUMA Robot

  • Kang, Chul-Goo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.16-21
    • /
    • 2007
  • Robotic applications, such as automatic fish cutting, require online trajectory planning because the material properties of the object, such as the bone or flesh conditions, are not known in advance. Different trajectories are required when the material properties vary. An effective online trajectory-planning algorithm is proposed using quaternions to determine the position and orientation of a robot manipulator with a spherical wrist. Quaternions are free of representation singularities and permit computationally efficient orientation interpolations. To prevent singular configurations, the exact locations of the kinematic singularities of the PUMA 560 manipulator are derived and geometrically illustrated when a forearm offset exists and the third link length is not zero.

신경회로망을 이용한 이중암 로봇의 충돌회피를 위한 최적작업계획 (Optimal Task Planning for Collision-Avoidance of Dual-Arm Robot Using Neural Network)

  • 최우형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.176-181
    • /
    • 2000
  • Collision free task planning for dual-arm robot which perform many subtasks in a common work space can be achieved in two steps : path planning and trajectory planning. path planning finds the order of tasks for each robot to minimize path lengths as well as to avoid collision with static obstacles. A trajectory planning strategy is to let each robot move along its path as fast as possible and delay one robot at its initial position or reduce speed at the middle of its path to avoid collision with the other robot.

  • PDF

신경망과 진화 알고리즘을 이용한 로봇 매니퓰레이터의 궤적 제어에 관한 연구 (A Study on Trajectory Control of Robot Manipulator using Neural Network and Evolutionary Algorithm)

  • 김해진;임정은;이영석;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1960-1961
    • /
    • 2006
  • In this paper, The trajectory control of robot manipulator is proposed. It divides by trajectory planning and tracking control. A trajectory planning and tracking control of robot manipulator is used to the neural network and evolutionary algorithm. The trajectory planning provides not only the optimal trajectory for a given cost function through evolutionary algorithm but also the configurations of the robot manipulator along the trajectory by considering the robot dynamics. The computed torque method (C.T.M) using the model of the robot manipulators is an effective means for trajectory tracking control. However, the tracking performance of this method is severely affected by the uncertainties of robot manipulators. The Radial Basis Function Networks(RBFN) is used not to learn the inverse dynamic model but to compensate the uncertainties of robot manipulator. The computer simulations show the effectiveness of the proposed method.

  • PDF

룰드서피스 듀얼곡률이론을 이용한 로봇경로계획 (A Robot Trajectory Planning based on the Dual Curvature Theory of a Ruled Surface)

  • 박상민;송문상;김재희;유범상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.482-487
    • /
    • 2002
  • This paper presents a robot trajectory generation method based on the dual curvature theory of ruled surfaces. Robot trajectory can be represented as a ruled surface generated by the TCP(Tool Center Point) and my unit vector among the tool frame. Dual curvature theory of ruled surfaces provides the robot control algorithm with the motion property parameters. With the differential properties of the ruled surface, the linear and angular motion properties of the robot end effector can be utilized in the robot trajectory planning.

  • PDF

이동물체 포획을 위한 최적 경로 계획 (Optimal Trajectory Planning for Capturing a Mobile Object)

  • 황철호;이상헌;조방현;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.696-702
    • /
    • 2004
  • An optimal trajectory generation algorithm for capturing a moving object by a mobile robot in real-time is proposed in this paper. The linear and rotational velocities of the moving object are estimated using the Kalman filter, as a state estimator. For the estimation, the moving object is tracked by a 2-DOF active camera mounted on the mobile robot, which enables a mobile manipulator to track the mobile robot until the capturing moment. The optimal trajectory for capturing the moving object is dependent on the initial conditions of the mobile robot as well as the moving object. Therefore, real-time trajectory planning for the mobile robot is definitely required for the successful capturing of the moving object. The performance of proposed algorithm is verified through the real experiments and the superiority is demonstrated by comparing to other algorithms.

최소시간을 고려한 다관절 로봇의 궤적계획 (Trajectory Planning of Articulated Robots with Minimum-Time Criterion)

  • 최진섭;양성모;강희용
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.122-127
    • /
    • 1996
  • The achievement of the optimal condition for the task of an industrial articulated robot used in many fields is an important problem to improve productivity. In this paper, a minimum-time trajectory for an articulated robot along the specified path is studied and simulated with a proper example. A general dynamic model of manipulator is represented as a function of path distance. Using this model, the velocity is produced as fast as possible at each point along the path. This minimum-time trajectory planning module together with the existing collision-free path planning modules is utilized to design the optimal path planning of robot in cases where obstacles present.

  • PDF

차륜 이동 로봇의 모터 구동 전압 제한 조건을 고려한 코너링(cornering) 모션의 최소 시간 궤적 계획 및 제어 (Near-Minimum-Time Cornering Trajectory Planning and Control for Differential Wheeled Mobile Robots with Motor Actuation Voltage Constraint)

  • 변용진;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.845-853
    • /
    • 2012
  • We propose time-optimal cornering motion trajectory planning and control algorithms for differential wheeled mobile robot with motor actuating voltage constraint, under piecewise constant control input condition. For time-optimal cornering trajectory generation, 1) we considered mobile robot's dynamics including actuator motors, 2) divided the cornering trajectory into one liner section, followed by two cornering section with angular acceleration and deceleration, and finally one liner section, and 3) formulated an efficient trajectory generation algorithm satisfying the bang-bang control principle. Also we proposed an efficient trajectory control algorithm and implemented with an X-bot to prove the performance.

Trajectory Planning for Industrial Robot Manipulators Considering Assigned Velocity and Allowance Under Joint Acceleration Limit

  • Munasinghe, S.Rohan;Nakamura, Masatoshi;Goto, Satoru;Kyura, Nobuhiro
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.68-75
    • /
    • 2003
  • This paper presents an effective trajectory planning algorithm for industrial robot manipulators. Given the end-effector trajectory in Cartesian space, together with the relevant constraints and task specifications, the proposed method is capable of planning the optimum end-effector trajectory. The proposed trajectory planning algorithm considers the joint acceleration limit, end-effector velocity limits, and trajectory allowance. A feedforward compensator is also incorporated in the proposed algorithm to counteract the delay in joint dynamics. The algorithm is carefully designed so that it can be directly adopted with the existing industrial manipulators. The proposed algorithm can be easily programmed for various tasks given the specifications and constraints. A three-dimensional test trajectory was planned with the proposed algorithm and tested with the Performer MK3s industrial manipulator. The results verified effective manipulator performance within the constraints.