• Title/Summary/Keyword: Robot simulation

검색결과 1,696건 처리시간 0.029초

Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Shi, Shanshuang
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2630-2637
    • /
    • 2020
  • The structure design of divertor Multi-Functional Maintenance Platform (MFMP) actuated by hydraulic system for China Fusion Engineering Test Reactor (CFETR) was introduced in this paper. The model of MFMP was established according to maintenance requirements. In this paper, Newton-Euler method and the improved virtual work principle were used, the equivalent driving force of each actuator was obtained through the equivalent Jacobian inverse matrix derived from velocity relationship among the components. The accuracy of the model was verified by ADAMS simulation. The stability control of the heavy-duty components driven by hydraulic cylinders based on Newton-Euler method and improved virtual work principle was established.

직선 치형을 가진 로봇 감속기(RSR)의 응력 집중 FEM 해석 (Stress Concentration FEM Simulation of Robot Speed Reducer(RSR) with Straight Line Teeth Profile)

  • 남원기;국창호;함성훈;장인훈;오세훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.952-956
    • /
    • 2007
  • 산업현장에서는 공장 자동화의 발전에 따라 많은 로봇들이 사람을 대신하고 있다. 일반적으로 산업 현장에서 사용되는 로봇은 고정밀도의 감속기를 필요로 한다. 고정밀의 제어를 위해서는 cycloid 치형 혹은 인벌류트 치형을 가진 감속기를 사용하게 된다. 이러한 감속기는 낮은 백래쉬와 높은 감속비를 가지면서 동시에 치형의 높은 강성을 필요로 한다. 본 논문에서는 새로이 고안한 직선 치형을 가진 로봇 감속기(RSR) 치형의강성을 FEM 해석을 통해 실제로 적용이 가능한지 여부를 시뮬레이션 해보았으며, 실제로도 적용이 가능함을 알 수 있었다.

Comparison of Impulses Experienced on Human Joints Walking on the Ground to Those Experienced Walking on a Treadmill

  • So, Byung-Rok;Yi, Byung-Ju;Han, Seog-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.243-252
    • /
    • 2008
  • It has been reported that long-term exercise on a treadmill (running machine) may cause injury to the joints in a human's lower extremities. Previous works related to analysis of human walking motion are, however, mostly based on clinical statistics and experimental methodology. This paper proposes an analytical methodology. Specifically, this work deals with a comparison of normal walking on the ground and walking on a treadmill in regard to the external and internal impulses exerted on the joints of a human's lower extremities. First, a modeling procedure of impulses, impulse geometry, and impulse measure for the human lower extremity model will be briefly introduced and a new impulse measure for analysis of internal impulse is developed. Based on these analytical tools, we analyze the external and internal impulses through a planar 7-linked human lower extremity model. It is shown through simulation that the human walking on a treadmill exhibits greater internal impulses on the knee and ankle joints of the supporting leg when compared to that on the ground. In order to corroborate the effectiveness of the proposed methodology, a force platform was developed to measure the external impulses exerted on the ground for the cases of the normal walking and walking on the treadmill. It is shown that the experimental results correspond well to the simulation results.

객체지향방식에 의한 자동화제조시스템 시뮬레이터의 설계 및 구현 (Development of a Simulator for Automated Manufacturing Systems)

  • 이진규;이진환;이태억;오부경;오석찬
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1997년도 춘계 학술대회 발표집
    • /
    • pp.23-28
    • /
    • 1997
  • We discuss development of a simulator for automated manufacturing systems (AMSs) which have sophisticated automated material handling equipments and complicated work flows. The simulator is designed to satisfy the following requirements. A user should be able to easily configure or specify an AMS through a graphical user interface (GUI) and minimal data input. The user should be able to model diverse and complied control logic for automated material handling systems like automated guided vehicle (AGV) systems, robot workcell systems and conveyor systems as well as complicated job flow program. Real time animation is desired. Finally, the simulator should be easily maintained and extended. To satisfy the requirements, we use an object-oriented paradigm for modeling, designing, and programming of the simulator. We use an object-oriented modeling framework to design the modeling elements library, and take the process interaction approach for scheduling processes and events. To model a user-defined diverse control logic, we also develop a script language and its interpreter. We explain design and implementation strategies. We implement the simulator using Visual C++ 4.2 and Open GL on Windows NT and the Windows95. Some modeling examples will be demonstrated.

  • PDF

무변압기형 연료전지/태양광용 PCS의 직류분 보상기법 (DC Offset Current Compensation Method of Transformeless Fuel Cell/PV PCS)

  • 박봉희;김승민;최주엽;최익;이상철;이동하;이영권
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.92-97
    • /
    • 2013
  • This paper proposes DC offset current compensation method of transformerless fuel cell/PV PCS. DC offset current is generated by the unbalanced internal resistance of the switching devices in full bridge topology. The other cause is the sensitivity of the current sensor, which is lower than DSP in resolution. If power converter system has these causes, the AC output current in the inverter will generate the DC offset. In case of transformerless grid-connected inverter system, DC offset current is fatal to grid-side, which results in saturating grid side transformer. Several simulation results show the difficulties of detecting DC offset current. Detecting DC offset current method consists of the differential amplifiers and PWM is compensated by the output of the Op amp circuit with integrator controller. PSIM simulation verifies that the proposed method is simpler and more effective than using low resolution current sensor alone.

Mission Planning for Underwater Survey with Autonomous Marine Vehicles

  • Jang, Junwoo;Do, Haggi;Kim, Jinwhan
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.41-49
    • /
    • 2022
  • With the advancement of intelligent vehicles and unmanned systems, there is a growing interest in underwater surveys using autonomous marine vehicles (AMVs). This study presents an automated planning strategy for a long-term survey mission using a fleet of AMVs consisting of autonomous surface vehicles and autonomous underwater vehicles. Due to the complex nature of the mission, the actions of the vehicle must be of high-level abstraction, which means that the actions indicate not only motion of the vehicle but also symbols and semantics, such as those corresponding to deploy, charge, and survey. For automated planning, the planning domain definition language (PDDL) was employed to construct a mission planner for realizing a powerful and flexible planning system. Despite being able to handle abstract actions, such high-level planners have difficulty in efficiently optimizing numerical objectives such as obtaining the shortest route given multiple destinations. To alleviate this issue, a widely known technique in operations research was additionally employed, which limited the solution space so that the high-level planner could devise efficient plans. For a comprehensive evaluation of the proposed method, various PDDL-based planners with different parameter settings were implemented, and their performances were compared through simulation. The simulation result shows that the proposed method outperformed the baseline solutions by yielding plans that completed the missions more quickly, thereby demonstrating the efficacy of the proposed methodology.

선박 위 착륙을 위한 임피던스 제어기반 쿼드콥터 족형 랜딩플랫폼 제어 전략 (Control Strategies for Landing Quadcopters on Ships with Legged Platform Based on Impedance Control)

  • 황성현;이승현;진성호;이인호
    • 로봇학회논문지
    • /
    • 제17권1호
    • /
    • pp.48-57
    • /
    • 2022
  • In this paper, we propose a legged landing platform for the quadcopter taking off and landing in the ship environment. In the ship environment with waves and winds, the aircraft has risks being overturned by contact impact and excessive inclination during landing on the ship. This landing platform has four landing legs under the quadcopter for balancing and shock relief. In order to make the quadcopter balanced on ships, the position of each end effector was controlled by PID control. And shocks have mainly happened when quadcopter contacts the ship's surface as well as legs move fast. Hence, impedance control was used to cope with the shocks. The performance of the landing platform was demonstrated by a simulation and a prototype in three sea states based on a specific size of a ship. During landing and tracking the slope of the ship's surface, oscillations of rotation and translation from the shock were mitigated by the controller. As a result, it was verified that transient response and stability got better by adding impedance control in simulation models and prototype experiments.

Construction Ergonomic Intervention to Reduce Musculoskeletal Disorders in Aluminum Formworkers

  • Kim, Dae Young;Yi, Hak;Lee, Sang Ryong;Kim, Bubryur;Lee, Dong-Eun
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.465-472
    • /
    • 2022
  • Manual material handling is the one of the leading causes for musculoskeletal disorders (MSDs) and lower back discomfort. According to a study, construction formworkers suffer greater rates of muscular injuries and related illness due to manual activities. However, there is still a paucity of information on MSD, preventive posture issues, and corresponding solutions for construction aluminum formworkers. As a result, MSD and disregard of worker health and safety continue to exist at construction sites. Although preventive measures and strategies have been studied in previous research, we believe it is imperative to shed light on this problem through this study. This study aims to 1) implement a simple and cost-effective elevated bench to reduce MSDs, and 2) determine the rapid upper limbs assessment (RULA) and Ovako working posture analyzing system (OWAS) action catagory of workers in different postures to assess their MSD conditions and obtain an optimal position and posture using the Jack human modeling software and simulation tool. The study findings reveal a considerable reduction in MSD discomfort and which posture is acceptable in post-intervention instances.Thus results provide inexpensive and simple ergonomic interventions with favorable RULA and OWAS ratings that can be applied at construction sites. This study demonstrates workstation ergonomic intervention cases that can aid in understanding the urgency of applying existing research strategies into practice.

  • PDF

Research on the cable-driven endoscopic manipulator for fusion reactors

  • Guodong Qin;Yong Cheng;Aihong Ji;Hongtao Pan;Yang Yang;Zhixin Yao;Yuntao Song
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.498-505
    • /
    • 2024
  • In this paper, a cable-driven endoscopic manipulator (CEM) is designed for the Chinese latest compact fusion reactor. The whole CEM arm is more than 3000 mm long and includes end vision tools, an endoscopic manipulator/control system, a feeding system, a drag chain system, support systems, a neutron shield door, etc. It can cover a range of ±45° of the vacuum chamber by working in a wrap-around mode, etc., to meet the need for observation at any position and angle. By placing all drive motors in the end drive box via a cable drive, cooling, and radiation protection of the entire robot can be facilitated. To address the CEM motion control problem, a discrete trajectory tracking method is proposed. By restricting each joint of the CEM to the target curve through segmental fitting, the trajectory tracking control is completed. To avoid the joint rotation angle overrun, a joint limit rotation angle optimization method is proposed based on the equivalent rod length principle. Finally, the CEM simulation system is established. The rationality of the structure design and the effectiveness of the motion control algorithm are verified by the simulation.

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.