• Title/Summary/Keyword: Robot programming education

Search Result 147, Processing Time 0.026 seconds

Analysis of LEGO Mindstorm Activity Levels Based on the Van Hiele Levels of Development in Geometry (Van Hiele 기하 학습 수준 이론에 따른 LEGO 마인드스톰 활동 수준 분석)

  • Rim, Haemee;Choi, Inseo
    • Journal of the Korean School Mathematics Society
    • /
    • v.22 no.3
    • /
    • pp.257-275
    • /
    • 2019
  • Technology-based convergence education is being emphasized for students in the era of the fourth industrial revolution. In math education, students need to increase their capabilities in the future by having them experience mathematical problems using robots and sensors, a key technology in the era of the fourth industrial revolution. To this end, it is necessary to present educational uses for educational robots in relation to math and curriculum from a 'mathematics education perspective' and analyze its educational use in relation to the mathematics and curriculum, considering the role of mathematics at the base of the process of exploring real-world phenomena and solving problems. Based on the analysis of Van Hiele levels of development in geometry and the LOGO activity level of Olson et al.(1987), this study analyzed and presented the level of LEGO Mindstorm activity, a representative educational Robot capable of collecting and analyzing data and programming in the form of block language, in the first to fourth level.

Current Status and Development Direction of Digital Literacy Education in Elementary Schools (초등학교에서의 디지털 리터러시 교육의 현황과 발전 방향)

  • Yang, Ji-Hye;Hyun, Yong-Chan;Park, Jung-Hwan
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.138-149
    • /
    • 2021
  • Our society is developing exponentially, but schools are not keeping up with the pace of society's development, and they are not providing digital literacy education suitable for the growth and development of students. Thus, this study identified the actual conditions and problems of digital literacy education at school sites and sought the direction of development of digital literacy education. By identifying the current state of schools in which the 2015 curriculum is operated, we sought the direction of the development of digital literacy education for our school. First, old digital devices should be replaced, laptops or smart devices should be provided for each student, and internet access should be available throughout the school. Second, digital literacy education should be provided to teachers by providing various training opportunities.Third, coding education where you can express what you think as logical thinking, Software training should increase the level of the algorithmic domain that shows the computational thinking process of discovering problems and automating a given problem into a computer programming language, there is enough robot that can be seen operating the program, digital parish will need to be delivered.

Unmanned Surface Vehicle for Collecting Marine Debris (쓰레기 수거용 무인 수상로봇)

  • Oh, Myung Hoon;Kim, Jea Heung;Kim, Hyeon Min;Shin, Dong A;Kim, Dong Hun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.61-62
    • /
    • 2015
  • This study presents a movable USV (Unmanned Surface Vehicle) based on Micro Controller. Recently, Micro Controller has widely used in application programming such as industry and education application. In particular, Robot is capable of collecting Marine Debris in any sea area is needed so We propose USV used IP camera for automatic driving, distance detection to control movement of USV in order to prevent of collision based on Arduino. Also, Surrounding situation taken by IP camera can be transmitted to monitor and smartphone.

  • PDF

Pyro platform comparison for effective education of robot programming (효과적인 로봇 프로그래밍 교육을 위한 Pyro 플랫폼 비교)

  • Song, Ju-Won;Woo, Gyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.272-275
    • /
    • 2010
  • 인간이 하기 힘들거나 번거로운 작업은 지능형 로봇이 대체하고 있다. 하지만 로봇을 개발하기 위해서 설계, 구현 단계에서 실제 로봇을 사용하기 어려워 시뮬레이션 환경이 많이 사용된다. 실제 로봇을 사용할 경우 시간과 비용이 많이 들며 개발에 실패하거나 문제가 생겼을 경우 위험부담이 크다. 그러므로 위험부담을 줄이고 개발기간을 단축하기 위해서 실제 구성될 환경과 동작 환경을 고려한 시뮬레이션 환경이 로봇 제어 프로그램 개발에 많이 사용되고 있다. Pyro는 교육과 개발의 용도로 많이 사용되고 있으며, 로봇에 대한 세부적인 지식이 없더라도 제어 프로그램을 충분히 구현할 수 있어 시뮬레이션 환경으로 적합한 로봇 개발 플랫폼이다. 본 논문에서는 Pyro에 대해서 알아보고 Pyro 플랫폼들을 비교해본다.

An Analysis of Research Trends Related to Software Education for Young Children in Korea (유아의 소프트웨어 교육 관련 국내 최근 연구의 경향 분석)

  • Chun, Hui Young;Park, Soyeon;Sung, Jihyun
    • Korean Journal of Child Education & Care
    • /
    • v.19 no.2
    • /
    • pp.177-196
    • /
    • 2019
  • Objective: This study aims to analyze research trends related to software education for young children, focusing on studies published in Korea from 2016 to 2019 March. Methods: A total of 26 research publications on software education for young children, searched from Korea Citation Index and Research Information Sharing Service were identified for the analysis. The trend in these publications was classified and examined respectively by publication dates, types of publications, and the fields of study. To investigate a means of research, the analysis included key topics, types of research methods, and characteristics of the study variables. Results: The results of the analysis show that the number of publications on the topic of software education for young children has increased over the three years, of which most were published as a scholarly journal article. Among the 26 research studies analyzed, 16 (61.5%) are related to the field of early childhood education or child studies. Key topics and target subjects of the most research include the curriculum development of software education for young children or the effectiveness of software education on 4- and 5-year-old children. Most of the analyzed studies are experimental research designs or in the form of literature reviews. The most frequently studied research variable is young children's cognitive characteristics. For the studies that employ educational programs, the use of a physical computing environment is prevalent, and the most frequently used robot as a programming tool is "Albert". The duration of the program implementation varies, ranging from 5 weeks to 48 weeks. In the analyzed research studies, computational thinking is conceptualized as a problem-solving skill that can be improved by software education, and assessed by individual instruments measuring sub-factors of computational thinking. Conclusion/Implications: The present study reveals that, although the number of research publications in software education for young children has increased, the overall sufficiency of the accumulated research data and a variety of research methods are still lacking. An increased interest in software education for young children and more research activities in this area are needed to develop and implement developmentally appropriate software education programs in early childhood settings.

The Effect of Physical Computing Education to Improve the Convergence Capability of Secondary Mathematics-Science Gifted Students (중등 수학과학 영재를 위한 피지컬컴퓨팅 교육이 융합적 역량 향상에 미치는 영향)

  • Kim, Jihyun;Kim, Taeyoung
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.2
    • /
    • pp.87-98
    • /
    • 2016
  • Our study is composed of Arduino robot assembly, board connecting and collaborative programming learning, and it is to evaluate their effect on improving secondary mathematics-science gifted students' convergence capability. Research results show that interpersonal skills, information-scientific creativity and integrative thinking disposition are improved. Further, by analyzing the relationship between the sub-elements of each thinking element, persistence and imagination for solving problems, interest of scientific information, openness, sense of adventure, a logical attitude, communication, productive skepticism and so on are extracted as important factors in convergence learning. Thus, as the result of our study, we know that gifted students conducted various thinking activities in their learning process to solve the problem, and it can be seen that convergence competencies are also improved significantly.

Development of Control Board for Coding Education and Convergence Contents based on 3D Printing (코딩 교육용 제어 보드와 3D 프린팅 융복합 콘텐츠 개발)

  • Youm, Sung-Kwan;Kim, Young-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.1-8
    • /
    • 2018
  • It is a key role in leading and activating coding education as a process to solve problems creatively to produce and provide the educational contents on the basis of 3D printing. In this paper, we develop a variety of fusion contents to use 3D printing and 8bit MCU base control board which provides specific functions through Arduino. The developed control program conducts various packet monitoring more than ten times per a second, supporting intrinsically full duplex. In addition, communication protocol optimized in conveying a lot of information enables to control different contents. The contents produced with the control board and 3D printing are useful as a programming education tool to train the principle and the concept of coding.