• Title/Summary/Keyword: Robot programming

Search Result 420, Processing Time 0.035 seconds

Development of robot welding program for gantry-type robot using neutral CAD data format (CAD중립파일을 이용한 켄트리형 ROBOT 자동용접 프로그램개발)

  • CHUNG JAEHOON;SHEEN DONGMOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.79-84
    • /
    • 2004
  • In this study, a robot welding programming system is developed for gantry-type robot using a neutral CAD data format. The system automatically extracts welding line data from tile CAD model represented in IGES format and generates a robot program based on the weld line extracted. The welding program is simulated jar verification by using IGRlP, a virtual manufacturing solution. The robot welding programming system is demonstrated with a simple example.

  • PDF

Development of 3D Off-line Simulator for Industrial Robots (산업용 로봇의 3차원 오프라인 시뮬레이터 개발)

  • 김홍래;신행봉;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1731-1734
    • /
    • 2003
  • We propose a unmaned integrating control system based-on Windows XP version Off-Line Programming System which can simulate a Robot model in 3D Graphics space in this paper. The robot with 4 and 6 axes modeled SM5 and AM1 respectively were adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed off-line program. The interface between users and the off-line programming system in the Windows XP's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

Development of Off-line Simulator for Robots with Auto-teaching (자동교시기능을 갖는 로봇의 3차원 오프라인 시뮬레이터 개발)

  • 신행봉;정동연;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.319-326
    • /
    • 2003
  • We propose a unmaned integrating control system based-on Windows XP version Off-Line Programming System which can simulate a Robot model in 3D Graphics space in this paper. The industrial robot with 4 and 6 axes modeled SM5 and AMI respectively were adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed off-line program. The interface between users and the off-line programming system in the Windows XP's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

Development of Off-line Simulator for Industrial Robots with Auto-teaching (자동교시기능을 갖는 산업용 로봇의 3차원 오프라인 시뮬레이터 개발)

  • 정동연;한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.80-88
    • /
    • 2003
  • We propose a new technique to design an unmaned integrating control system based-on Windows XP version off-Line Programming System which can simulate a dynamic model of robot manipulator in three dimensions graphics space in this paper. The robot with 4 and 6 axes modeled SM5 and AM1 respectively were adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed off-line program. The interface between users and the off$.$line programming system in the Windows XP's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by silicon Graphics, Inc. were utilized for three dimensions graphics.

An Investigation of Robot Programming Language with the Capabilities of Sensory Information Processing (센서 정보 처리 기능을 갖는 로보트 프로그램밍 언어에 관한 조사)

  • Kim, Dae-Won;Ko, Myoun-Sam;Lee, Bum-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.435-438
    • /
    • 1987
  • In this paper, among the robot programming languages that enable processing of sensory information, eight exemplary languages are chosen, and investigated in terms of their characteristics, why they are designed the way they are, and the kind of sensors each language can use and apply to. In addition, the characteristics of each language is compared with one another from the sensor point of view and the flow of each language is analyzed from the robot language classification point of view. Finally, We investigate the progress and the requirements of the sensor-based robot programming languages for further developments.

  • PDF

Validation of the Unplugged Robot Education System Capable of Computerless Coding Education

  • Song, Jeong-Beom;Lee, Tae-Wuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.151-159
    • /
    • 2015
  • In traditional programing education, computers were used as the main tool. Consequently, it was problematic to provide education in an environment without computers or for learners without computer skills. To address this problem, this study developed and validated an unplugged robot education system capable of computerless programming education. The key feature of the proposed system is that programing can be done only by connecting programming blocks in symbols of a flow chart with built-in commands. Validation of the system was performed by a specialist group. Validity was very high with values of content validity ratio (CVR) over 0.7 in all evaluation criteria except "Ease of error debugging" and "Linkages to educational curriculum," whose CVR values were each 0.6. Future directions include improvement in the two areas that scored lower than the others did by, respectively, system improvement to support debugging in error conditions that may occur during the programming process, and development of user guide to support linkages to educational curriculum.

Computer aided design system for robotic painting line (동장공정의 로보틱자동화를 위한 설계지원 시스템)

  • Suh, Suk-Hwan;Cho, Jung-Hoon;Kang, Dae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.171-179
    • /
    • 1994
  • For successful implementation of robotic painting system, a structured design and analysis procedure is necessary. In designing robotic system, both functional and economical feasibility should be investigated. As the robotization is complicated task involving implemen- tation details (such as robot selection, accessory design, and spatial layout) together with operation details, the computer aided design and analysis method should be sought. However, conventional robotic design systems and off-line programming systems cannot accommodate these inquiries in a unified fashion. In this research, we develop an interactive design support system for robotization of a cycle painting line. With the developed system called SPRPL (Simulation Package for Robotic Painting Line) users can design the painting objects (via FRAME module), select robot model (ROBOT), design the part hanger (FEEDER), and arrange the workcell. After motion programming (MOTION), the design is evaluated in terms of: a) workpace analysis, b) coating thickness analysis, and c) cycle time (ANALYSIS).

  • PDF

Comparison of the Effects of Robotics Education to Programming Education Using Meta-Analysis (메타 분석을 이용한 로봇교육과 프로그래밍교육의 효과 비교)

  • Yang, Changmo
    • Journal of The Korean Association of Information Education
    • /
    • v.18 no.3
    • /
    • pp.413-422
    • /
    • 2014
  • The positive impacts of robotics education and programming education on learners are similar. However, robotics education differs from programming education because it includes purchasing and building robots that cause financial and cognitive load of learners. Due to these differences, two kinds of education may not possess equal efficacies for all schools or all learning objectives. To verify this hypothesis, we conducted meta-analysis of studies on robotics education published in South Korea to estimate the effect sizes and compare it to that of programming education. The difference between the average effect sizes of robotics education and of programming education was significant, as the former was 0.4060 and the latter 0.6664. The average effect size of programming education was significantly larger than that of robotics education for primary school students. Middle school students achieved the highest results in both robotics education and programming education. Also, robotics education became more effective than programming education as students were older. Analysis on objectives showed that programming education uniformly affected all areas, whereas robotics education had more impact on affective domain than cognitive domain. Robot construction had the largest effect size, followed by robot construction and programming, robot programming, and robot utilization. Programming education has larger positive impacts on students overall compared to robotics education. Robotics education is more effective to upperclassmen than programming education, and improves affective domain of students. Also, robotics education shows higher efficacy when combined with various subjects.

Application of Herding Problem to a Mobile Robot (이동로봇의 Herding 문제 적용)

  • Kang Min Koo;Lee Jin Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.322-329
    • /
    • 2005
  • This paper considers the application of mobile robot to the herding problem. The herding problem involves a ‘pursuer’ trying to herd a moving ‘evader’ to a predefined location. In this paper, two mobile robots act as pursuer and evader in the fenced area, where the pursuer robot uses a fuzzy cooperative decision strategy (FCDS) in the herding algorithm. To herd evader robot to a predefined position, the pursuer robot calculates strategic herding point and then navigates to that point using FCDS. FCDS consists of a two-level hierarchy: low level motion descriptors and a high level coordinator. In order to optimize the FCDS, we use the multi­thread evolutionary programming algorithm. The proposed algorithm is implemented in the real mobile robot system and its performance is demonstrated using experimental results.