• 제목/요약/키워드: Robot manipulators

검색결과 499건 처리시간 0.026초

조립용 로봇의 가변구조 적응제어 (Variable Structure Adaptive Control of Assembling Robot)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.131-136
    • /
    • 1997
  • This paper represent the variable structure adaptive mode control technique which is new approach to implement the robust control of industrial robot manipulator with external disturbances and parameter uncertainties. Sliding mode control is a well-known technique for robust control of uncertain nonlinear systems. The robustness of sliding model controllers can be shown in contiuous time, but digital implementation may not preserve robustness properties because the sampling process limits the existence of a true sliding mode. the sampling process often forces the trajectory to oscillate in the neighborhood of the sliding surface. Adaptive control technique is particularly well-suited to robot manipulators where dynamic model is highly complex and may contain unknown parameters. Adaptive control algorithm is designed by using the principle of the model reference adaptive control method based upon the hyperstability theory. The proposed control scheme has a simple sturcture is computationally fast and does not require knowledge of the complex dynamic model or the parameter values of the manipulator or the payload. Simulation results show that the proposed method not only improves the performance of the system but also reduces the chattering problem of sliding mode control, Consequently, it is expected that the new adaptive sliding mode control algorithm will be suited for various practical applications of industrial robot control system.

  • PDF

2족 보행로봇을 위한 여유자유도 궤적 생성 (Redundancy Trajectory Generation for Biped Robot Manipulators)

  • 연제성;박종현
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1014-1022
    • /
    • 2009
  • A biped robot in locomotion can be regarded to be kinetically redundant in that the link-chain from its foot on the ground to its swing foot has more degrees of freedom that needed to realize stable bipedal locomotion. This paper proposes a new method to generate a trajectory for bipedal locomotion based on this redundancy, which directly generates a locomotion trajectory at the joint level unlike some other methods such as LIPM (linear inverted-pendulum mode) and GCIPM (gravity-compensated inverted-pendulum mode), each of which generates a trajectory of the center of gravity or the hip link under the assumption of the dominance of the hip-link inertia before generating the trajectory of the whole links at the joint level. For the stability of the trajectory generated in the proposed method, a stability condition based on the ZMP (zero-moment point) is used as a constraint as well as other kinetic constraints for bipedal motions. A 6-DOF biped robot is used to show how a stable locomotion trajectory can be generated in the sagittal plane by the proposed method and to demonstrate the feasibility of the proposed method.

바닥작업이 가능한 양팔 서비스 로봇의 기구학 설계, 제작 및 제어 (Design, Implementation, and Control of Two Arms of a Service Robot for Floor Tasks)

  • 배영걸;정슬
    • 전자공학회논문지
    • /
    • 제50권3호
    • /
    • pp.203-211
    • /
    • 2013
  • 본 논문에서는 바닥작업용 서비스 로봇을 위한 두 팔 매니퓰레이터의 개발 및 제어에 관한 연구를 기술하였다. 6자유도의 매니퓰레이터를 설계하였으며, 그 중 5자유도 매니퓰레이터를 제작하였다. 제작된 매니퓰레이터의 순기구학과 역기구학을 해석하고 시뮬레이션을 수행하여 기구학을 검증하였다. 실제로 역기구학을 바탕으로 로봇 팔을 제작하여 제어하였다. 양팔의 동작 성능을 확인하기 위해 오른쪽 팔과 왼쪽 팔을 각각 따로 제어하여 서로 다른 경로를 추종하는 실험을 수행하였다. 실험결과를 통해 기구학 분석을 검증하였으며, 시스템의 동작 여부를 확인할 수 있었다.

듀얼-핑거의 안정적 파지 운동 제어에 관한 연구 (A Study on Stable Grasping Motion Control of Dual-Finger)

  • 엄혁;최종환;김승수;한현용;양순용;이진걸
    • 한국공작기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.81-88
    • /
    • 2005
  • This paper attempts to derive the dynamic model of handling tasks in finger robot which grasps stable and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, the roblems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. The effect of geometric constraints of area-contacts between the link's end-effector and the object is analyzed and the model based on the differential-algebraic equations is presented. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation and the experiment that the control system gives the performance improvement in the dynamic stable grasping and nimble manipulating of the dual fingers robot with soft tips.

보완 골격 알고리듬을 이용한 구난로봇의 자체 충돌감지/회피 (Self-Collision Detection/Avoidance for a Rescue Robot by Modified Skeleton Algorithm)

  • 이원석;홍성일;박규현;강윤식
    • 한국군사과학기술학회지
    • /
    • 제18권4호
    • /
    • pp.451-458
    • /
    • 2015
  • This paper handles self-collision avoidance for a rescue robot with redundant manipulators. In order to detect all available self-collisions in advance, minimum distances between arbitrary robot parts should be monitored in real-time. For the minimum distance estimation, we suggest a modified method from a previous skeleton algorithm which has less computation burden and realize collision avoidance based on a potential function using the proposed algorithm. The resultant command by collision avoidance should not disturb a given primary task, so null-space of joint solution from a CLIK is utilized for collision avoidance by a gradient projection method.

로봇 메니퓰레이터의 제어를 위한 특이점 회피 알고리즘의 비교 연구 (Singularity Avoidance Algorithms for Controlling Robot Manipulator: A Comparative Study)

  • 김상현;박재홍
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.42-54
    • /
    • 2017
  • Using an inverse of the geometric Jacobian matrix is one of the most popular ways to control robot manipulators, because the Jacobian matrix contains the relationship between joint space velocities and operational space velocities. However, the control algorithm based on Jacobian matrix has algorithmic singularities: The robot manipulator becomes unstable when the Jacobian matrix loses rank. To solve this problem, various methods such as damped and filtered inverse have been proposed, but comparative studies to evaluate the performance of these algorithms are insufficient. Thus, this paper deals with a comparative analysis of six representative singularity avoidance algorithms: Damped Pseudo Inverse, Error Damped Pseudo Inverse, Scaled Jacobian Transpose, Selectively Damped Inverse, Filtered Inverse, and Task Transition Method. Especially, these algorithms are verified through computer simulations with a virtual model of a humanoid robot, THORMANG, in order to evaluate tracking error, computational time, and multiple task performance. With the experimental results, this paper contains a deep discussion about the effectiveness and limitations of each algorithm.

구속된 환경에서의 여유자유도 로봇의 기구학적 제어와 원자력 발전소 노즐댐 장 /탈착작업에의 적용 (Kinematic Control of Redundant Robots in the Constrained Environment and Its Applicaiton to a Nozzle Dam Installation/Detachment Task in Nuclear Power Plants)

  • 박기철;장평훈;김승호
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3871-3882
    • /
    • 1996
  • In this paper, a closed-form formulation for inverse kinematics of robot manipulators with kinematic redundancy under the constrained environment has been derived using the Kuhn-Tucker condition, the extended Lagrange multiplier method and the working set method. The proposed algorithm satisfies the necessaryand sufficient conditions for optimization subject to equality and inequality constraints. In addition, computationally efficient kinematic control methods have been proposed using differential kinemetics and gradient projection mehtod. The effectiveness of the proposed methods has been demonstrated with a 4-dof planar robot, and then a 7-dof spatial robot as a practical application to the nozzle dam task in the Nuclear Power Plant.

모바일 매니퓰레이터 시뮬레이션을 위한 로봇 물리 엔진의 성능 평가 (Performance Evaluation of Robotic Physics Engine for Mobile Manipulator Simulation)

  • 이관우;윤준헌;박수한;박재흥
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.31-38
    • /
    • 2024
  • A mobile manipulator is capable of handling a wide range of workspaces by overcoming the limitations of mobility inherent in existing fixed-base manipulators. To simulate the mobile manipulator, two contact operations should be considered in the physics engines. One of these operations is the grasp stability between the gripper and the object, while the other involves the contact between the wheels of the mobile robot and the ground during driving. However, it is still difficult to choose an appropriate physics engine for simulating these contact operations of the mobile manipulator. In this paper, the performance of physics engines for simulating the mobile manipulator is evaluated. Firstly, the grasp stability of the physics engine is quantitatively evaluated based on the contact force discontinuity. Secondly, when the mobile robot is controlled by open or closed-loop control methods, differences in the path taken by the mobile robot depending on the physics engine are analyzed. To assess the performance of robot simulation, three dynamic simulators-MuJoCo, CoppeliaSim, and IsaacSim-are used along with five physics engines: MuJoCo, Newton, ODE, Bullet, and PhysX.

구동기의 동특성을 고려한 로봇매니퓰레이터의 강인제어기 설계 (A robust controller design for robot manipulators with actuator dynamics)

  • 박광석;황동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.139-142
    • /
    • 1997
  • In this paper, a robust controller is proposed to achieve an accurate tracking for an uncertain nonlinear plant with actuator dynamics. The extent of parameter uncertainty can be quantified by using linear parameterization technique. A switching controller is proposed to guarantee the global asymptotic stability of the plant. In order to eliminate the chattering caused by the switching controller, a smoothing controller is designed using the boundary layer technique around the sliding surface and guarantees the uniform ultimate boundedness of the tracking error.

  • PDF

Robust Optimal Control of Robot Manipulators with a Weighting Matrix Determination Algorithm

  • Kim, Mi-Kyung;Kang, Hee-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2004-2009
    • /
    • 2003
  • A robust optimal control design is proposed in this study for rigid robotic systems under the unknown load and the other uncertainties. The uncertainties are quadratically bounded for some positive definite matrix. Iterative method finding the Q weighting matrix is shown. Computer simulations have been done for a weight-lifting operation of a two-link manipulator and the result of the simulation shows that the proposed algorithm is very effective for a robust control of robotic systems.

  • PDF