• 제목/요약/키워드: Robot Tracking

검색결과 1,013건 처리시간 0.028초

용접용 이륜 이동로봇의 모델링 및 적응 추종 제어 (Modeling and Adaptive Motion Tracking Control of Two-Wheeled Welding Mobile Robot (WMR))

  • 서진호;;;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.786-791
    • /
    • 2003
  • This paper proposes an adaptive control algorithm for nonholonomic mobile robots with unknown parameters and the proposed control method is used in numerical simulations for applying to a practical twowheeled welding mobile robot(WMR). The proposed adaptive controller to track an arbitrary given welding path is designed by using back-stepping technique and is derived for a nonlinear model under the assumption such that the system parameters are partially known. Moreover, the proposed adaptive control system is stable in the sense of Lyapunov stability. Inertia moments of system are considered to be unknown parameters and their values can be estimated simply by using update laws proposed in an adaptive control scheme of this research. The simulation results are provided to show the effectiveness of the accurate tracking capability of the proposed controller for two-wheeled welding mobile robot with a smooth curved reference welding path.

  • PDF

Visual Tracking of Objects for a Mobile Robot using Point Snake Algorithm

  • Kim, Won;Lee, Choon-Young;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.30-34
    • /
    • 1998
  • Path Planning is one of the important fields in robot technologies. Local path planning may be done in on-line modes while recognizing an environment of robot by itself. In dynamic environments to obtain fluent information for environments vision system as a sensing equipment is a one of the most necessary devices for safe and effective guidance of robots. If there is a predictor that tells what future sensing outputs will be, robot can respond to anticipated environmental changes in advance. The tracking of obstacles has a deep relationship to the prediction for safe navigation. We tried to deal with active contours, that is snakes, to find out the possibilities of stable tracking of objects in image plane. Snakes are defined based on energy functions, and can be deformed to a certain contour form which would converge to the minimum energy states by the forces produced from energy differences. By using point algorithm we could have more speedy convergence time because the Brent's method gives the solution to find the local minima fast. The snake algorithm may be applied to sequential image frames to track objects in the images by these characteristics of speedy convergence and robust edge detection ability.

  • PDF

Two-Wheeled Welding Mobile Robot for Tracking a Smooth Curved Welding Path Using Adaptive Sliding-Mode Control Technique

  • Dung, Ngo Manh;Duy, Vo Hoang;Phuong, Nguyen Thanh;Kim, Sang-Bong;Oh, Myung-Suck
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.283-294
    • /
    • 2007
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundizing function is proposed and applied to a two-wheeled welding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the sliding surface vector including new boundizing function and the adaptation laws are chosen to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system is shown through the Lyapunov method. In addition, a simple way of measuring the errors by potentiometers is introduced. The simulations and experimental results are shown to prove the effectiveness of the proposed controller.

Appearance Based Object Identification for Mobile Robot Localization in Intelligent Space with Distributed Vision Sensors

  • Jin, TaeSeok;Morioka, Kazuyuki;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.165-171
    • /
    • 2004
  • Robots will be able to coexist with humans and support humans effectively in near future. One of the most important aspects in the development of human-friendly robots is to cooperation between humans and robots. In this paper, we proposed a method for multi-object identification in order to achieve such human-centered system and robot localization in intelligent space. The intelligent space is the space where many intelligent devices, such as computers and sensors, are distributed. The Intelligent Space achieves the human centered services by accelerating the physical and psychological interaction between humans and intelligent devices. As an intelligent device of the Intelligent Space, a color CCD camera module, which includes processing and networking part, has been chosen. The Intelligent Space requires functions of identifying and tracking the multiple objects to realize appropriate services to users under the multi-camera environments. In order to achieve seamless tracking and location estimation many camera modules are distributed. They causes some errors about object identification among different camera modules. This paper describes appearance based object representation for the distributed vision system in Intelligent Space to achieve consistent labeling of all objects. Then, we discuss how to learn the object color appearance model and how to achieve the multi-object tracking under occlusions.

용접선 자동추적시 용접전류 신호처리 기법에 관한 연구 (A Study on Signal Processing Method for Welding Current in Automatic Weld Seam Tracking System)

  • 문형순;나석주
    • Journal of Welding and Joining
    • /
    • 제16권3호
    • /
    • pp.102-110
    • /
    • 1998
  • The horizontal fillet welding is prevalently used in heavy and ship building industries to fabricate the large scale structures. A deep understanding of the horizontal fillet welding process is restricted, because the phenomena occurring in welding are very complex and highly non-linear characteristics. To achieve the satisfactory weld bead geometry in robot welding system, the seam tracking algorithm should be reliable. The number of seam tracker was developed for arc welding automation by now. Among these seam tracker, the arc sensor is prevalently used in industrial robot welding system because of its low cost and flexibility. However, the accuracy of arc sensor would be decreased due to the electrical noise and metal transfer. In this study, the signal processing algorithm based on the neural network was implemented to enhance the reliability of measured welding current signals. Moreover, the seam tracking algorithm in conjunction with the signal processing algorithm was implemented to trace the center of weld line. It was revealed that the neural network could be effectively used to predict the welding current signal at the end of weaving.

  • PDF

레이저빔 수직투사 구조의 시각장치를 이용한 실시간 용접선추적 시스템 (Real-Time Seam Tracking System Using a Visual Device with Vertical Projection of Laser Beam)

  • 김진대;이재원;신찬배
    • 한국정밀공학회지
    • /
    • 제24권10호
    • /
    • pp.64-74
    • /
    • 2007
  • Because of the size and environment in the shipbuilding process, the portable type robot is required for the automatic seam tracking. For this reason, the structure of laser sensor should be considered in the initial design step and the coordinate transformation between welding robot and laser sensor, which is joint finder, must be identified exactly and the real time tracking algorithm based on these consideration could be developed. In this research, laser displacement sensor in which its structure is laser beam's vertical projection, is developed to recognize the location of weld joint. In practical applications, however, images of weld joints are often degraded because of the surface specularity or spatter. To overcome the problem, the constrained joint finding algorithm is proposed. In the approach of coordinate conversion rule for the visual feedback control among welding torch, robot body and laser sensor is applied by the same reference point method. In the real time seam tracking algorithms we propose constrained sampling method which uses look ahead distance. The RLS(Recursive Least Square) filter is applied to obtain the smooth tracking path from the sensitive edge data. From the experimental results, we could see the possibility that the developed laser sensor with proposed processing algorithm and real time seam tracking method can be used as a welding under the shipbuilding condition.

레이저 센서 기반의 Cascaded 제어기 및 신경회로망을 이용한 이동로봇의 위치 추종 실험적 연구 (Experimental Studies of a Cascaded Controller with a Neural Network for Position Tracking Control of a Mobile Robot Based on a Laser Sensor)

  • 장평수;장은수;전상운;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.625-633
    • /
    • 2004
  • In this paper, position control of a car-like mobile robot using a neural network is presented. positional information of the mobile robot is given by a laser range finder located remotely through wireless communication. The heading angle is measured by a gyro sensor. Considering these two sensor information as a reference, the robot posture is corrected by a cascaded controller. To improve the tracking performance, a neural network with a cascaded controller is used to compensate for any uncertainty in the robot. The neural network functions as a compensator to minimize the positional errors in on-line fashion. A car-like mobile robot is built as a test-bed and experimental studies of several controllers are conducted and compared. Experimental results show that the best position control performance can be achieved by a cascaded controller with a neural network.

Design of a Compact Laparoscopic Assistant Robot;KaLAR

  • Lee, Yun-Ju;Kim, Jona-Than;Ko, Seong-Young;Lee, Woo-Jung;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2648-2653
    • /
    • 2003
  • This paper describes the development of a 3-DOF laparoscopic assistant robot system with motor-controlled bending and zooming mechanisms using the voice command motion control and auto-tracking control. The system is designed with two major criteria: safety and adaptability. To satisfy the safety criteria we designed the robot with optimized range of motion. For adaptability, the robot is designed with compact size to minimize interference with the staffs in the operating room. The required external motions were replaced by the bending mechanism within the abdomen using flexible laparoscope. The zooming of the robot is achieved through in and out motion at the port where the laparoscope is inserted. The robot is attachable to the bedside using a conventional laparoscope holder with multiple DOF joints and is compact enough for hand-carry. The voice-controlled command input and auto-tracking control is expected to enhance the overall performance of the system while reducing the control load imposed on the surgeon during a laparoscopic surgery. The proposed system is expected to have sufficient safety features and an easy-to-use interface to enhance the overall performance of current laparoscopy.

  • PDF

선형 역덤벨 모델을 이용한 이족 보행 로봇의 기준 ZMP 궤적 생성 및 보행 구현 (Reference ZMP Trajectory Generation and Implementation for a Biped Robot via Linear Inverted Dumbbell Model (LIDM))

  • 이상용;김화수
    • 한국정밀공학회지
    • /
    • 제29권4호
    • /
    • pp.417-425
    • /
    • 2012
  • This paper presents reference ZMP trajectory generation and implementation for a biped robot via linear inverted dumbbell model (LIDM), which can consider the effect of external momentum on the center of mass (COM) of robot. Based on a reference ZMP trajectory derived by using LIDM, a base trajectory is proposed not only to make the locomotion of robot similar to that of human but also to facilitate its implementation and tuning. In order to realize a dynamic walking using the proposed trajectory, compliance, impedance and ZMP tracking controllers are adopted together. Extensive experiments show that the proposed locomotion of a biped robot is stable and also, similar to that of human. Further researches on balance recovery of a biped robot will be carried out to guarantee its robust locomotion in combination with the proposed trajectory.

개선된 유전 알고리즘 기반의 휴머노이드 로봇의 안정 보행을 위한 제어기 구현 (Implementation of the Controller for a Stable Walking of a Humanoid Robot Using Improved Genetic Algorithm)

  • 공정식;이응혁;김진걸
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.399-405
    • /
    • 2007
  • This paper deals with the controller for a stable walking of a humanoid robot using genetic algorithm. A humanoid robot has instability during walking because it isn't fixed on the ground, and its nonlinearities of the joints increase its instability. If controller isn't robust, the robot may fall down at the ground during walking because of its nonlinearities. To solve this problem, robust controller is required to reduce the effect of nonlinearities and to gain the good tracking performance. In this paper, motion controller that is based on fuzzy-sliding mode controller is proposed. This controller can remove the effect of the saturation by limitation of the input voltage. It also includes compensator for reducing the effect of the nonlinearity by backlash and PI controller improving the tracking performance. In here, genetic algorithm is used for searching the optimal gains of the controller. From the given controller, a humanoid robot can moved more preciously. All the processes are investigated through simulations and are verified experimentally in a real joint system for a humanoid robot.