• Title/Summary/Keyword: Robot Intelligence

Search Result 348, Processing Time 0.022 seconds

Effects of maker education for high-school students on attitude toward software education, creative problem solving, computational thinking (고등학생 대상 메이커 교육이 소프트웨어 교육에 대한 태도, 창의적 문제해결력, 컴퓨팅 사고에 미치는 영향)

  • Hong, Wonjoon;Choi, Jae-Sung;Lee, Hyun
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.6
    • /
    • pp.585-596
    • /
    • 2020
  • The purpose of this study is to examine effects of maker education for high-school students on attitude toward software education, creative problem solving, and computational thinking. The program was designed to develop an artificial intelligence robot using mBlock and Arduino and implemented at a maker space. We analyzed 19 students among 20 who participated in the program, the result of paired t-test indicated significant increase in all variables. Also, we performed a multiple regression analysis to investigate predictors of perceived achievement and satisfaction. The finding demonstrated an initial attitude toward software education was found to be the significant predictor of perceived achievement and satisfaction. With the results, we confirmed maker education enhances attitude toward software education, creative problem solving, and computational thinking. Lastly, we discussed the implications and limitations and suggested the direction for future research.

Meta-analysis of the Application Effect of AI Educational Robots in Teaching in the New Period (새로운 시대의 교육에서 AI 교육 로봇의 응용 효과에 대한 메타 분석)

  • Cui, Jian-Dong;Song, Seung-keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.52-54
    • /
    • 2021
  • With the advent of the era of artificial intelligence, robot education and teaching under its empowerment have been widely concerned and applied worldwide. The purpose of this study: systematically evaluate the application effect of AI educational robots in student education and teaching; the method of this study: use the computer to search for relevant education in the search tools such as "Web of Science", "CNKI", "ERIC", "IEEE" A comparative study of the effects of robot teaching and traditional teaching. The retrieval time is from January 2000 to January 2020. Comprehensive MetaAnalysis 2.0 was used for Meta analysis. The results of this study: A quantitative analysis of the 31 valid research literatures included, and an objective evaluation of the effect of the meta-analysis on AI educational robots. The analysis results show that the combined effect of AI educational robots on student learning effects is 0.465 This indicates that educational robots have a moderately positive effect on students 'learning effectiveness. The conclusion of this study: The application effect of AI educational robots in student education and teaching is better than traditional education methods, which can better promote student learning.

  • PDF

Pilot Study - Development of Sit-To-Stand and Stand-To-Sit Muscle-Assisted Wearable Robot Algorithms in Elderly Patients with Hip Angle and Angular Velocity (Pilot Study - 고관절 각도 및 각속도 기반 기립(Sit-To-Stand) 및 착석(Stand-To-Sit) 근력 지원 웨어러블 로봇 알고리즘 개발)

  • Yonghyun Lee;Jintak Choi;Dongbin Shin;Yeonghoon Ji;Hyeyeon Jang;Changsoo Han;Yeonjoon Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.385-391
    • /
    • 2023
  • In the elderly population, sarcopenia occurs due to physical aging, leading to movement restrictions and loss of function. This results in dependence on daily activities and limitations in participation, ultimately decreasing the overall quality of life. In this study, we propose an algorithm designed to enable patients with sarcopenia to perform sit-to-stand and stand-to-sit movements seamlessly in their daily lives. The algorithm incorporates a wearable robot for muscle support and includes algorithms for standing and seated muscle strength support. To validate the algorithm's performance, EMG sensors were attached to the Rectus Femoris and Biceps Femoris muscles. The participants underwent two scenarios: one without wearing the device and one with the device providing muscle strength support, performing sit-to-stand and stand-to-sit motions for one minute in each case. The results showed a 16% increase in the EMG peak value of the Rectus Femoris muscle during standing motion (p=0.009). On the right side, there was a roughly 20% decrease (p=0.018) during standing and a 21% decrease (p=0.014) during sitting motion. In the future, we aim to gather additional data to further refine the algorithm. Our goal is to develop an optimal muscle strength support algorithm based on this data, making it applicable for real-life use by patients with sarcopenia.

Drug Bottle Delivery Robot Capable of Smartphone-Based Control and Image Process and Combining Wheel and Quadruped (스마트폰 제어 및 영상처리를 수행하는 바퀴와 4족을 결합한 약병 전송 로봇)

  • Lee, Sang Young;Kim, Hyun Su;Kim, Young Long;Hong, Seok Ho;Kim, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.569-579
    • /
    • 2013
  • Robot control and image processing using a smartphone and Wi-Fi communication is introduced. The robot has a wheel and quadruped mechanism that is transformed according to the environment and is mainly used for drug bottle delivery. The captured image on the camera is transmitted to the smartphone in the form of stream data, and the image data is processed in the smartphone to enable the robot to identify an object and to control the robot itself. A network was constructed so that only image data from the stream data was used, and an image processing scheme to identify the drug bottle and deliver it to a person using a robot arm is also presented. In this study, image processing techniques and algorithms were purely implemented on a smartphone with considerable computational power and multiple functions rather than a computer, which contributes to the intelligence and miniaturization of the robot system.

A Study on Consumer Emotion for Social Robot Appearance Design: Focusing on Multidimensional Scaling (MDS) and Cluster Analysis (소셜 로봇 외형 디자인에 대한 소비자 감성에 관한 연구: 다차원 척도법 (MDS)과 군집분석을 중심으로)

  • Seong-Hun Yu;Ji-Chan Yun;Junsik Lee;Do-Hyung Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.397-412
    • /
    • 2023
  • In order for social robots to take root in human life, it is important to consider the technical implementation of social robots and human psychology toward social robots. This study aimed to derive potential social robot clusters based on the emotions consumers feel about social robot appearance design, and to identify and compare important design characteristics and emotional differences of each cluster. In our study, we established a social robot emotion framework to measure and evaluate the emotions consumers feel about social robots, and evaluated the emotions of social robot designs based on the semantic differential method, an kansei engineering approach. We classified 30 social robots into 4 clusters by conducting a multidimensional scaling method and K-means cluster analysis based on the emotion evaluation results, confirmed the characteristics of design elements for each cluster, and conducted a comparative analysis on consumer emotions. We proposed a strategic direction for successful social robot design and development from a human-centered perspective based on the design characteristics and emotional differences derived for each cluster.

Development of Intelligent Messenger for Affective Interaction of Content Robot (콘텐츠 로봇의 감성적 반응을 위한 지능형 메신저 개발)

  • Park, Bum-Jun;So, Su-Hwan;Park, Tae-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.9-17
    • /
    • 2010
  • Nowadays, many research have been conducted on robots or interactive characters that properly respond to the users affection. In this paper, we develop an intelligent messenger that provides appropriate responses to text inputs according to user's intention and affection. In order to properly respond, the intelligent messenger adapts methods to recognize user's speech act and affection. And it uses an AIML-based interactive script to which tags are additionally attached to express affection and speech act. If the intelligent messenger finds a proper reply in the interactive scripts, it displays the reply in a dialog window, and an animation character expresses emotion assimilated with a user's affection. If the animation character is synchronized with a content robot through a wireless link, the robot in the same space with the user can provide emotional response.

Milestone State Generation Methods for Failure Handling of Autonomous Robots (자율 로봇의 오류 보정을 위한 이정표 상태 생성 방법)

  • Han, Hyun-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2760-2769
    • /
    • 2011
  • An intelligent autonomous robot generates a plan to achieve a goal. A plan is a sequence of robot actions that accomplish a given mission by being successfully executed. However, in the complex and dynamic real world, a robot may encounter unexpected situations and may not execute its planned actions any more. Therefore, an intelligent autonomous robot must prepare an efficient handling process to cope with these situations to successfully complete a given mission. Plan repair with milestone states is an efficient method to cope with the situation. It retains the advantages of other plan repair procedures. This paper proposes a regressive method of formulating milestone states and a method of assigning weighting values on conditions that compose a milestone state. The task to repair a plan may employ the weighting values as its job priority. The regressive method formulates less complex milestone states and leads to the conditions of a milestone state to take pertinent weighting values for an efficient handling procedure to repair a plan with milestone states.

Development of Force Feedback Joystick for Remote Control of a Mobile Robot (이동로봇의 원격제어를 위한 힘 반향 조이스틱의 개발)

  • Suh, Se-Wook;Yoo, Bong-Soo;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The main goal of existing mobile robot system was a complete autonomous navigation and the vision information was just used as an assistant way such as monitoring For this reason, the researches have been going towards sophistication of autonomousness gradually and the production costs also has been risen. However, it is also important to control remotely an inexpensive mobile robot system which has no intelligence at all. Such systems may be much more effective than fully autonomous systems in practice. Visual information from a simple camera and distance information from ultrasonic sensors are used for this system. Collision avoidance becomes the most important problem for this system. In this paper, we developed a force feedback joystick to control the robot system remotely with collision avoiding capability. Fuzzy logic is used for the algorithm in order to implement the expert s knowledge intelligently. Some experimental results show the force feedback joystick werks very well.

The Present and Future of Medical Robots: Focused on Surgical Robots (의료로봇의 현재와 미래: 수술로봇을 중심으로)

  • Song, Mi Ok;Cho, Yong Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.349-353
    • /
    • 2021
  • This study is a review study attempted to analyze the current situation of surgical robots based on previous research on surgical robots in the era of the 4th revolution, and to forecast the future direction of surgical robots. Surgical robots have made full progress since the launch of the da Vinci and the surgical robot is playing a role of supporting the surgeries of the surgeons or the master-slave method reflecting the intention of the surgeons. Recently, technologies are being developed to combine artificial intelligence and big data with surgical robots, and to commercialize a universal platform rather than a platform dedicated to surgery. Moreover, technologies for automating surgical robots are being developed by generating 3D image data based on diagnostic image data, providing real-time images, and integrating image data into one system. For the development of surgical robots, cooperation with clinicians and engineers, safety management of surgical robot, and institutional support for the use of surgical robots will be required.

Remote Control of Network-Based Modular Robot (네트웍 기반 모듈라 로봇의 원격 제어)

  • Yeom, Dong-Joo;Lee, Bo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.77-83
    • /
    • 2018
  • A modular robot that memorizes motion can be easily created and operated because it expresses by hand. However, since there is not enough storage space in the module to store the user-created operation, it is impossible to reuse the created operation, and when the modular robot again memorizes the operation, it changes to another operation. There is no main controller capable of operating a plurality of modular robots at the same time, and thus there is a disadvantage that the user must input directly to the modular robot. To overcome these disadvantages, a remote controller has been proposed that can be operated in the surrounding smart devices by designing web server and component based software using wired and wireless network. In the proposed method, various types of structures are created by connecting to a modular robot, and the reconstructed operation is performed again after storing, and the usefulness is confirmed by regenerating the stored operation effectively. In addition, the reliability of the downloaded trajectory data is verified by analyzing the difference between the trajectory data and the actual trajectory. In the future, the trajectory stored in the remote controller will be standardized using the artificial intelligence technique, so that the operation of the modular robot will be easily implemented.