• Title/Summary/Keyword: Robot Design

Search Result 2,390, Processing Time 0.025 seconds

A study on community care using AI technology (AI 기술을 활용한 커뮤니티케어에 관한 연구)

  • Seungae Kang
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.151-156
    • /
    • 2023
  • Currently, ICT is widely used in caring for the elderly living alone and preventing the disappearance of the elderly with dementia. Therefore, in this study, based on the government policy direction for the 4th industrial revolution, the use of AI technology-based care services, which are gradually increasing in community care, was sought to explore the current status and prospects for utilization and activation.AI speakers and caring robots, services that can be used for community care, help solve various problems experienced by the elderly, and are also used to relieve lack of conversation or loneliness by adding emotional functions. In order to activate community care using AI technology in the future: First, there is a need for continuous education to familiarize the elderly with AI devices and 'user experience (UX) design' for the elderly. Second, it is necessary to use human-centered technology that has a complementary relationship and enables emotional mutual relationships rather than using function-oriented technology. Third, it is necessary to solve ethical problems such as guaranteeing the user's right to self-determination and protecting privacy.

The Effect of Characteristics of Social Intelligence Robots on Satisfaction and Intention to Use: Focused on User of Single Person Households (소셜 지능로봇의 특성이 만족과 사용의도에 미치는 영향: 1인 가구 소셜 지능로봇 사용자를 중심으로)

  • Jeon, Gyuri;Lee, Chaehyun;Jung, Sungmi;Choi, Jeongil
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.1
    • /
    • pp.95-113
    • /
    • 2024
  • Purpose: This study focused on the societal changes associated with the entry into an ultra-aged society and the increase in single-person households. The core objective of this research is to investigate how social intelligent robots can bring about positive changes in the lives of individuals in single-person households and how such changes influence user satisfaction and the intention to use these robots. Methods: The study employed a cross-sectional analysis using a structural equation model. A survey designed to assess the impact of social intelligent robots' characteristics, such as perceived encouragement, empathy, presence, appearance, and attachment, on user satisfaction and usage intentions was conducted. Data were collected from a total of 335 users and analyzed using the structural equation model. Results: In the characteristics of social intelligent robots for single-person households, it was found that empathy, presence, and attachment significantly influenced satisfaction, while perceived encouragement, empathy, and attachment significantly influenced usage intentions. The research results indicate differences between enhancing user satisfaction and increasing the intention to use social intelligent robots. The findings suggest the essential need for a user-centric approach in the design and development of social intelligent robots. Additionally, it was observed that emotional support plays a crucial role in users' experiences with social intelligent robots. Conclusion: This study verified the impact of social intelligent robots on satisfaction and usage intentions based on users' experiences. It examined the influence of linguistic, visual, and personal characteristics of robots on user experiences, providing insights into how technological and human aspects of social intelligent robots interact to shape user satisfaction and usage intentions. Consequently, the study confirmed that social intelligent robots can bring positive changes to human life, emphasizing the necessity for the advancement of robot technology in a human-centric direction.

Design Factor Analysis of End-Effector for Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇용 엔드이펙터의 설계 요인 분석)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.284-290
    • /
    • 2013
  • This study analyzed the geometric, compressive, cutting and friction properties of oriental melons in order to design a gripper capable of soft handling and a cutter for cutting oriental melon vine among the end effector of oriental melon as a preliminary step for developing the end effector of the robot capable of harvesting oriental melons in protected cultivation. As a result, the average length, diameter at the midpoint, weight, volume and roundness of the oriental melons were 108 mm, 70 mm, 188 g, 333 mL and 3.8 mm. Nonlinear regression analysis was performed on the equation $W=L^a{\times}D_2^b$ with variation of the length (L) and diameter (D2) of the weight (W) of the oriental melons. As a result, it was shown that there was a correlation between a of 2.0279 and b of -0.9998 as a constant value. The average diameter of the oriental melon vine was 3.8 mm, and most vines were distributed within a radius of 5 mm from the center. The average yield value, compressive strength and hardness of the oriental melons were $36.5N/cm^2$, $185.7N/cm^2$ and $636.7N/cm^2$, respectively. The average cutting force and shear strength of the oriental melon vines were $2.87{\times}10^{-2}\;N$ and $5.60N/cm^2$, respectively. The maximum friction coefficient of the oriental melons was rubber of 0.609, followed by aluminium of 0.393, stainless steel of 0.177 and teflon of 0.079. It was considered possible to apply it to the size of the gripper and cutter, turning radius, dynamics of drive motor and selection of materials and their quality in light of the position error and safety factor according to the movement when designing end effector based on the analyzed data.

Design and Implementation of AR Model based Automatic Identification and Restoration Scheme for Line Scratches in Old Films (AR 모델 기반의 고전영화의 긁힘 손상의 자동 탐지 및 복원 시스템 설계와 구현)

  • Han, Ngoc-Soc;Kim, Seong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.47-54
    • /
    • 2010
  • Old archived film shows two major defects: line scratch and blobs. In this paper, we present a design and implementation of an automatic video restoration system for line scratches observed in archived film. We use autoregressive (AR) image model because we can make stochastic and specifically autoregressive image generation process with our PAST-PRESENT model and Sampling Pattern. We designed locality maximizing scanning pattern, which can generate nearly stationary time-like series of pixels, which is a strong requirement for a stochastic series to be autoregressive. The sampled pixel series undergoes filtering and model fitting using Durbin-Levinson algorithm before interpolation process. We designed three-stage film restoration system, which includes (1) film acquisition from VHS tapes, (2) simple line scratch detection and restoration, and (3) manual blob identification and sophisticated inpainting scheme. We implemented film acquisition and simple inpainting scheme on Texas Instruments DSP board TMS320DM642 EVM, and implemented our AR inpainting scheme on PC for sophisticated restoration. We experimented our scheme with two old Korean films: "Viva Freedom" and "Robot Tae-Kwon-V", and the experimental results show that our scheme improves Bertalmio's scheme for subjective quality (MOS), objective quality (PSNR), and especially restoration ratio (RR), which reflects how much similar to the manual inpainting results.

Design and Implementation of Interactive Game based on Embedded System (내장형 시스템 기반 체험형 게임의 설계 및 구현)

  • Lee, Woosik;Jung, Hoejung;Heo, Hojin;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • Embedded System includes touch, GPS, motion, and acceleration sensor, and can communicate with neighbor devices using wireless communication. Because Arduino with embedded system provides good environment for development and application, developers, engineers, designers, as well as artists, students have a great interest. They utilize Arduino in the robot, home appliances, fashion, culture and so on. In this paper, we design and implement a game using Arduino with embedded system which recognizes the human movement by moving away from one-dimensional game of the existing touch method. Implemented embedded system game measures gyro-sensor to recognize human movement and detects the attack success of the opponent by using touch sensor. Moreover, health of the game player is updated in the real time through the android phone-based database. In this paper, implemented embedded system-based game provides GUI screen of android phone. It is possible to select watching mode and competition mode. Also, it has low energy consumption and easy to expand because it send and receive data packet through recent Bluetooth communication.

Study on a Suspension of a Planetary Exploration Rover to Improve Driving Performance During Overcoming Obstacles

  • Eom, We-Sub;Kim, Youn-Kyu;Lee, Joo-Hee;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.381-387
    • /
    • 2012
  • The planetary exploration rover executes various missions after moving to the target point in an unknown environment in the shortest distance. Such missions include the researches for geological and climatic conditions as well as the existence of water or living creatures. If there is any obstacle on the way, it is detected by such sensors as ultrasonic sensor, infrared light sensor, stereo vision, and laser ranger finder. After the obtained data is transferred to the main controller of the rover, decisions can be made to either overcome or avoid the obstacle on the way based on the operating algorithm of the rover. All the planetary exploration rovers which have been developed until now receive the information of the height or width of the obstacle from such sensors before analyzing it in order to find out whether it is possible to overcome the obstacle or not. If it is decided to be better to overcome the obstacle in terms of the operating safety and the electric consumption of the rover, it is generally made to overcome it. Therefore, for the purpose of carrying out the planetary exploration task, it is necessary to design the proper suspension system of the rover which enables it to safely overcome any obstacle on the way on the surface in any unknown environment. This study focuses on the design of the new double 4-bar linkage type of suspension system applied to the Korea Aerospace Research Institute rover (a tentatively name) that is currently in the process of development by our institute in order to develop the planetary exploration rover which absolutely requires the capacity of overcoming any obstacle. Throughout this study, the negative moment which harms the capacity of the rover for overcoming an obstacle was induced through the dynamical modeling process for the rocker-bogie applied to the Mars exploration rover of the US and the improved version of rocker-bogie as well as the suggested double 4-bar linkage type of suspension system. Also, based on the height of the obstacle, a simulation was carried out for the negative moment of the suspension system before the excellence of the suspension system suggested through the comparison of responding characteristics was proved.

Evolution of Neural Network's Structure and Learn Patterns Based on Competitive Co-Evolutionary Method (경쟁적 공진화법에 의한 신경망의 구조와 학습패턴의 진화)

  • Joung, Chi-Sun;Lee, Dong-Wook;Jun, Hyo-Byung;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.29-37
    • /
    • 1999
  • In general, the information processing capability of a neural network is determined by its architecture and efficient training patterns. However, there is no systematic method for designing neural network and selecting effective training patterns. Evolutionary Algorithms(EAs) are referred to as the methods of population-based optimization. Therefore, EAs are considered as very efficient methods of optimal system design because they can provide much opportunity for obtaining the global optimal solution. In this paper, we propose a new method for finding the optimal structure of neural networks based on competitive co-evolution, which has two different populations. Each population is called the primary population and the secondary population respectively. The former is composed of the architecture of neural network and the latter is composed of training patterns. These two populations co-evolve competitively each other, that is, the training patterns will evolve to become more difficult for learning of neural networks and the architecture of neural networks will evolve to learn this patterns. This method prevents the system from the limitation of the performance by random design of neural networks and inadequate selection of training patterns. In co-evolutionary method, it is difficult to monitor the progress of co-evolution because the fitness of individuals varies dynamically. So, we also introduce the measurement method. The validity and effectiveness of the proposed method are inspected by applying it to the visual servoing of robot manipulators.

  • PDF

Development Fundamental Technologies for the Multi-Scale Mass-Deployable Cooperative Robots (멀티 스케일 다중 전개형 협업 로봇을 위한 요소 기술 개발)

  • Chu, Chong Nam;Kim, Haan;Kim, Jeongryul;Song, Sung-Hyuk;Koh, Je-Sung;Huh, Sungju;Ha, ChangSu;Kim, Jong Won;Ahn, Sung-Hoon;Cho, Kyu-Jin;Hong, Seong Soo;Lee, Dong Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • 'Multi-scale mass-deployable cooperative robots' is a next generation robotics paradigm where a large number of robots that vary in size cooperate in a hierarchical fashion to collect information in various environments. While this paradigm can exhibit the effective solution for exploration of the wide area consisting of various types of terrain, its technical maturity is still in its infant state and many technical hurdles should be resolved to realize this paradigm. In this paper, we propose to develop new design and manufacturing methodologies for the multi-scale mass-deployable cooperative robots. In doing so, we present various fundamental technologies in four different research fields. (1) Adaptable design methods consist of compliant mechanisms and hierarchical structures which provide robots with a unified way to overcome various and irregular terrains. (2) Soft composite materials realize the compliancy in these structures. (3) Multi-scale integrative manufacturing techniques are convergence of traditional methods for producing various sized robots assembled by such materials. Finally, (4) the control and communication techniques for the massive swarm robot systems enable multiple functionally simple robots to accomplish the complex job by effective job distribution.

Design of Indoor Electric Moving and Lifting Wheelchair with Minimum Rotation Radius and Obstacle Overcoming (최소 회전반경 및 장애물 극복형 실내 전동 이·승강 휠체어의 설계)

  • Kim, Young-Pil;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.415-424
    • /
    • 2019
  • In this paper, a minimum rotation radius was designed and fabricated to overcome the threshold so that elderly or disabled people who have difficulty moving can move and transfer safely and conveniently in a narrow room. In the indoor environment, where the sedentary culture develops, this study aimed to provide convenience for passengers with fracture diseases, geriatric diseases, and other knee and waist diseases. First, links, seats, armrests, covers, motors, batteries, chargers, controllers, etc. were attached to the frame so that they could be moved and lifted indoors. The product design and structure were designed considering the user's environment and physical characteristics, and IoT functions were added. A driving experiment was performed to confirm the operating performance of the manufactured indoor moving and lifting wheelchair. The performance tests, such as continuous running time, turning radius, maximum actuator load, maximum lift height, sound pressure level, minimum sensing distance of the driving aid sensor, interworking of server and app programs, device compatibility, and duty cycle error rate, were performed. As a result of the test, the built-in wheelchair could achieve the performance test target of each item and operate successfully.

Characteristics of Integrated Aging-friendly Technologies into Future Smart Housing (미래주택에 적용될 고령친화기술의 특성연구)

  • Cui, Jing yu;Lee, Yeun sook;Hwang, Ji hye
    • Design Convergence Study
    • /
    • v.15 no.2
    • /
    • pp.1-15
    • /
    • 2016
  • The purpose of this study is to identify the characteristics of aging-friendly technology that can be integrated into future smart homes in an aging society. The literature survey and content analysis method were used to collect and analyze data. Papers of the international journal ICOST (International Conference on Smart Homes and Health Telematics) that professionally deal with converged technologies were analysis units. Sixty-five papers among 215 papers published from 2007 through 2014 were selected on the basis of end-users orientation. Totally, out of 65 papers 76 technology items were extracted. Characteristics of those technologies were analyzed focusing on purpose and application methods. As results, in terms of purpose, the technologies were oriented to provide both of psychological and physiological support to the users, focusing on the safety, convenience, health and entertainment to extend independent life of the elderly. Among the application method such as building structure, furniture, product, wearable device and free movable robot, product were dominant. Through those results, the aging-friendly technology is expected to alleviate a wide range of issues in aging society.