• Title/Summary/Keyword: Robot Controller

Search Result 1,556, Processing Time 0.031 seconds

Shared Vehicle Teleoperation using a Virtual Driving Interface (가상 운전 인터페이스를 활용한 자동차 협력 원격조종)

  • Kim, Jae-Seok;Lee, Kwang-Hyun;Ryu, Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.243-249
    • /
    • 2015
  • In direct vehicle teleoperation, a human operator drives a vehicle at a distance through a pair of master and slave device. However, if there is time delay, it is difficult to remotely drive the vehicle due to slow response. In order to address this problem, we introduced a novel methodology of shared vehicle teleoperation using a virtual driving interface. The methodology was developed with four components: 1) virtual driving environment, 2) interface for virtual driving environment, 3) path generator based on virtual driving trajectory, 4) path following controller. Experimental results showed the effectiveness of the proposed approach in simple and cluttered driving environment as well. In the experiments, we compared two sampling methods, fixed sampling time and user defined instant, and finally merged method showed best remote driving performance in term of completion time and number of collision.

Field Feasibility Study of an Eddy Current Testing System for Steam Generator Tubes of Nuclear Power Plant (원전 증기발생기 와전류검사 시스템 현장적용 연구)

  • Moon, Gyoon-Young;Lee, Tae-Hun;Kim, In-Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Steam generator is one of the most important component of nuclear power plant, and it's integrity and reliability are to be assured to high level by pre-service inspection and in-service inspection. To improve the reliability of steam generator heat exchanger tubes and to secure the management of nuclear power plant safely, KHNP CRI recently has developed eddy current testing system for steam generator. KHNP CRI have performed a series of experimental verification and field application to confirm the performance of the developed ECT system in accordance with ASME Code requirements. The ECT system consists of a remote data acquisition unit, an ECT signal acquisition and analysis software, a water chamber robot controller and a probe push-puller. In this paper, we will details of the developed ECT system and the software and their experimental performance. And also we will report the field applying performance and the issues for further steps.

Development of a Automatic Welding System for Various Marks on the Hull of Vessels (선박외판 문자 자동용접 시스템의 개발)

  • Yoon, Hun-Sung;Yang, Jong-Soo;Kim, Ho-Kyeong;Choi, Young-Dal
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.90-95
    • /
    • 2008
  • The letters and marks on the hull of vessels are marked by welding bead or steel plate to resist the corrosion environment. It has done by manual work. So, it cause deterioration of welding quality and process delay and so on. The automated welding device for draft mark has developed partially in the field of shipbuilding. But it can be used for draft mark only. And it has caused a few problems about that workablity and movablity are decreased owing to the size and weight of device. So we developed the automated welding device that can be used for most letters and marks on the hull. It designed to 3 axises mobile robot include to ratoation axis and stand alone type controller with multi GUI base on imbedded windows.

  • PDF

Optimal Posture Control for Unmanned Bicycle (무인자전거 최적자세제어)

  • Yang, Ji-Hyuk;Lee, Sang-Yong;Kim, Seuk-Yun;Lee, Young-Sam;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1006-1013
    • /
    • 2011
  • In this paper, we propose an optimal posture control law for an unmanned bicycle by deriving linear bicycle model from fully nonlinear differential equations. We calculate each equilibrium point of a bicycle under any given turning radius and angular speed of rear wheel. There is only one equilibrium point when a bicycle goes straight, while there are a lot of equilibrium points in case of turning. We present an optimal equilibrium point which makes the leaning input minimum when a bicycle is turning. As human riders give rolling torque by moving center of gravity of a body, many previous studies use a movable mass to move center of gravity like humans do. Instead we propose a propeller as a new leaning input which generates rolling torque. The propeller thrust input makes bicycle model simpler and removes input magnitude constraint unlike a movable mass. The proposed controller can hold optimal equilibrium points using both steering input and leaning input. The simulation results on linear control for circular motion are demonstrated to show the validity of the proposed approach.

Development of Traffic Congestion Prediction Module Using Vehicle Detection System for Intelligent Transportation System (ITS를 위한 차량검지시스템을 기반으로 한 교통 정체 예측 모듈 개발)

  • Sin, Won-Sik;Oh, Se-Do;Kim, Young-Jin
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2010
  • The role of Intelligent Transportation System (ITS) is to efficiently manipulate the traffic flow and reduce the cost in logistics by using the state of the art technologies which combine telecommunication, sensor, and control technology. Especially, the hardware part of ITS is rapidly adapting to the up-to-date techniques in GPS and telematics to provide essential raw data to the controllers. However, the software part of ITS needs more sophisticated techniques to take care of vast amount of on-line data to be analyzed by the controller for their decision makings. In this paper, the authors develop a traffic congestion prediction model based on several different parameters from the sensory data captured in the Vehicle Detection System (VDS). This model uses the neural network technology in analyzing the traffic flow and predicting the traffic congestion in the designated area. This model also validates the results by analyzing the errors between actual traffic data and prediction program.

A Study on Real-time Control of Bead Height and Joint Tracking (비드 높이 및 조인트 추적의 실시간 제어 연구)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.71-78
    • /
    • 2007
  • There have been continuous efforts to automate welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, and using this, the 3 dimensional geometry of the bead is measured in real time. For the application in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

DC Offset Current Compensation Method of Transformeless Fuel Cell/PV PCS (무변압기형 연료전지/태양광용 PCS의 직류분 보상기법)

  • Park, Bong-Hee;Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha;Lee, Young-Kwon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.92-97
    • /
    • 2013
  • This paper proposes DC offset current compensation method of transformerless fuel cell/PV PCS. DC offset current is generated by the unbalanced internal resistance of the switching devices in full bridge topology. The other cause is the sensitivity of the current sensor, which is lower than DSP in resolution. If power converter system has these causes, the AC output current in the inverter will generate the DC offset. In case of transformerless grid-connected inverter system, DC offset current is fatal to grid-side, which results in saturating grid side transformer. Several simulation results show the difficulties of detecting DC offset current. Detecting DC offset current method consists of the differential amplifiers and PWM is compensated by the output of the Op amp circuit with integrator controller. PSIM simulation verifies that the proposed method is simpler and more effective than using low resolution current sensor alone.

State Estimator and Controller Design of an AR Drone with ROS (ROS를 이용한 드론의 상태 추정과 제어기 설계)

  • Kim, Kwan-Soo;Kang, Hyun-Ho;Lee, Sang-Su;You, Sung-Hyun;Lee, Dhong-Hun;Lee, Dong-Kyu;Kim, Young-Eun;Ahn, Choon-Ki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.434-437
    • /
    • 2018
  • 본 논문에서는 ROS (Robot Operating System)에 대해서 소개하고 ROS를 이용해 드론의 제어기와 필터를 구현해본다. 드론이 강인한 성능을 보이기 위해서는 기체의 상태에 대한 더 정확한 추정이 필요하다. 드론이 기체좌표계로 출력하는 각 축(x축, y축, z축)에 대한 선속도, 선가속도를 더 정확히 추정하기 위해 칼만 필터를 설계하며 칼만 필터를 통과한 상태 변수를 제어 입력으로 하는 PID(Proportional Integral Derivative) 제어기를 설계한다. 실험적인 부분에서는 제어기와 자율 주행 알고리즘을 접목시켜 드론이 자신의 상태를 추정하고 알고리즘을 순차적으로 진행하는 과정을 살펴본다. 마지막으로 알고리즘을 통해 드론의 임무 수행 여부를 살펴보고 정밀한 제어를 위한 추가적인 제어기 설계 방법과 연구 방향을 제시하고자 한다.

Fuzzy Sky-hook Control of Semi-active Suspension System Using Rotary MR Damper (회전형 MR 댐퍼를 이용한 반능동 현가장치의 퍼지 스카이-훅 제어)

  • Cho, Jeong-Mok;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.701-706
    • /
    • 2007
  • Recently, a number of researches about linear magnetorheological(MR) damper using valve-mode characteristics of MR fluid have sufficiently undertaken, but researches about rotary MR damper using shear-mode characteristics of MR fluid are not enough. In this paper, we performed vibration control of shear-mode MR damper for unlimited rotating actuator of mobile robot. Also fuzzy logic based vibration control for shear-mode MR damper is suggested. The parameters, like scaling factor of input/output and center of the triangular membership functions associated with the different linguistic variables, are tuned by genetic algorithm. Simulation results demonstrate the effectiveness of the fuzzy-skyhook controller for vibration control of shear-mode MR damper under impact force.

Least Squares Method-Based System Identification for a 2-Axes Gimbal Structure Loading Device (2축 짐벌 구조 적재 장치를 위한 최소제곱법 기반 시스템 식별)

  • Sim, Yeri;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.288-295
    • /
    • 2022
  • This study shows a system identification method of a balancing loading device for a stair climbing delivery robot. The balancing loading device is designed as a 2-axes gimbal structure and is interpreted as two independent pendulum structures for simplifying. The loading device's properties such as mass, moment of inertia, and position of the center of gravity are changeable for luggage. The system identification process of the loading device is required, and the controller should be optimized for the system in real-time. In this study, the system identification method is based on least squares method to estimate the unknown parameters of the loading device's dynamic equation. It estimates the unknown parameters by calculating them that minimize the error function between the real system's motion and the estimated system's motion. This study improves the accuracy of parameter estimation using a null space solution. The null space solution can produce the correct parameters by adjusting the parameter's relative sizes. The proposed system identification method is verified by the simulation to determine how close the estimated unknown parameters are to the real parameters.