• Title/Summary/Keyword: Robot Controller

Search Result 1,554, Processing Time 0.032 seconds

비선형 보상기와 피드포워드 제어에 의한 로봇의 위치/힘 제어 (Position/Force Control of a Robot by a Nonlinear Compensator and Feedforward Control)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.232-240
    • /
    • 1998
  • This paper deals with a hybrid position/force control of a robot which is moving on the constrained object with constant force. The proposed controller is composed of a position and force controller. The position controller has a nonlinear compensator which is based on the dynamic robot model and the force controller is attached by feedforward element. A direct drive robot with hard nonlinearity which is controlled by the proposed algorithm has moved on the constrained object with a high stiffness and low stiffness. The results show that the proposed controller has more vibration suppression effects which is occurred to the constrained object with a high stiffness, than a existing feedback controller, and accurate force control can be obtained by comparatively a small feedback gain.

  • PDF

독립 비젼 시스템 기반의 축구로봇을 위한 계층적 행동 제어기 (A Hierarchical Motion Controller for Soccer Robots with Stand-alone Vision System)

  • 이동일;김형종;김상준;장재완;최정원;이석규
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.133-141
    • /
    • 2002
  • In this paper, we propose a hierarchical motion controller with stand-alone vision system to enhance the flexibility of the robot soccer system. In addition, we simplified the model of dynamic environments of the robot using petri-net and simple state diagram. Based on the proposed model, we designed the robot soccer system with velocity and position controller that includes 4-level hierarchically structured controller. Some experimental results using the stand-alone vision system from host system show improvement of the controller performance by reducing processing time of vision algorithm.

크로스 커플링을 이용한 이동 로봇의 경로제어에 관한 연구 (A Study on Path Tracking Control for Mobile Robot Using Cross Coupling)

  • 한영석;이쾌희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2351-2353
    • /
    • 1998
  • This paper suggests the wheel controller for PWS(Power Wheeled Steering) mobile robot. The proposed controller consists of two parts. To control each motor, the sliding mode controller implemented. This method has robustness about modeling error and disturbance, so the velocity tracking is well guaranteed in the presence of varying load. The design of a fuzzy cross-coupling controller for a PWS mobile robot is described here. Fuzzy cross-coupling control directly minimizes the tracking error by coordinating the motion of the two drive wheels. The fuzzy cross-coupling controller has excellent disturbance rejection and therefore is advantageous when the robot is not loaded symmetrically. The capability of the proposed controller was verified through the computer simulation.

  • PDF

이족보행로보트의 구동부 및 제어부의 설계에 관한 연구 (A study on the driver and controller design of the biped robot)

  • 심인섭;김주한;김동준;김갑일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.871-873
    • /
    • 1995
  • The purpose of this paper is to design and construct the compact type joint driver and controller of the biped robot. This biped robot will be designed to be suitable for the practical usages and applications in the work environment, which is not plat floor, like a stairs by taking the stand-alone style that equipped all the parts except power sources. Generally, highly nonlinear motion dynamics of the biped robot is realized to linear approximations by installing a high-ratio speed reducer at each joint and dividing motions into a several piecewise linear motions, which is realized by the digital controller design techniques. This biped robot has symmetrical structure to get the stable walking ability and also the hierachical structure to control each joint as well. That is, all of the joint controllers are connected to the main controller in the composition of overall controllers. The driver and controller of each joint uses PI controller that compensate the velocity and position errors by the data of the encoder. And the signal characteristics of each joint controller forms a trapezoid speed profile which is predefined by the values of direction, maximum velocity and position.

  • PDF

퍼지추론을 이용한 이동로봇의 백스테핑 제어기 성능개선 (Performance Improvement for Back-stepping Controller of a Mobile Robot Based on Fuzzy Systems)

  • 박재훼;진태석;이만형
    • 전자공학회논문지SC
    • /
    • 제40권5호
    • /
    • pp.308-316
    • /
    • 2003
  • 이 논문은 퍼지 시스템을 기반으로 하여 이동로봇의 제적제어에 대하여 기술한다. 기존의 백스텝핑 (back-stepping) 제어기는 이동로봇의 동역학과 기구학을 모두 포함하여 제어기를 구성하였다. 그러나 기존의 back-stepping 제어기는 기구학적 제어기에서 생성되는 속도 명령에 의해서 많은 영향을 받는다. 기존의 back-stepping 제어기의 성능을 증가 시키기 위해서 본 논문에서는 비선형 제이기로 많이 사용되고 있는 퍼지 시스템을 사용하였다. 본 논문에서는 back-stepping 제어기의 새로운 속도명령을 퍼지 추론을 통하여 생성하였다. 퍼지 규칙은 기구학적 제어기의 개인을 설정하기 위해서 설정하였으며, 퍼지 추론을 통하여 새로 생성된 속도명령은 기준명령의 변화를 고려하여 생성되었다. 그리고 수치실험을 통하여 기존의 back-stepping 제어기 보다 제안된 방법이 우수함을 증명하였다.

적응 퍼지 제어를 이용한 이동 로보트의 자율 주행에 관한 연구 (A Study on the Autonomous Navigation of Mobile Robot using Adaptive Fuzzy Control)

  • 오준섭;박진배최윤호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.433-436
    • /
    • 1998
  • The objective of this paper is to design a adaptive fuzzy controller for autonomous navigation of mobile robot. The adaptive fuzzy controller has an advantage in data processing time and convergence speed. The basic idea of control is to induct membership function and fuzzy inference rules and to scale inducted membership function to suitable robot state. The adaptive fuzzy control method is applied to mobile robot and the simulation results show the effectiveness of our controller.

  • PDF

직각 좌표 로보트의 PWM 프로그래머블 제어기 설계 (Design of a PWM Programmable Controller for Cartesian Coordinates Robot)

  • 이두복;박상희
    • 대한전기학회논문지
    • /
    • 제36권4호
    • /
    • pp.293-300
    • /
    • 1987
  • This paper presents a desing of a PWM programmable controller for industrial robot to be utilized in process which reqires various movements and repeating operations. To be specific, a low-level robot language is constructed which makes easy for the user to program complex robot motion, and an interpreter is developed to execute the program. Also, related hardware and software, and monitor program for convenience of user are implemented. When the proposed controller is applied to the catresian coordinate 4-axis manipulator, it reveals that the error probabilities of X,Y and Z axis as 0.033%, 0.023%,0.028% respectively.

  • PDF

CAN 통신을 이용한 다축 로봇 제어기 (Multi-Axes Robot Controller with CAN)

  • 최영섭;천광수;이동현;김학진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.491-493
    • /
    • 2007
  • This paper is suggesting the method to embody Multi-Axes robot controller by using CAN which has been the most popular industrial networks. The robot controller guarantees the efficiency and reliability by using CAN as a communication tool between upper robot control parts and lower control parts.

  • PDF

로봇 매니플레이터의 분산 적응제어 (Decentralized Adaptive Control of Robot Manipulators)

  • 이수한;이용연;신규현
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.110-116
    • /
    • 2004
  • In this paper, a decentralized adaptive controller is proposed to control robot manipulators which are governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require mathematical model or parameter values of robot manipulators. The stability of the manipulators with the controller is proved by Lyapunov theory. The results of numerical simulations show that the system is stable, and has excellent trajectory tracking performance.

2-트로웰 방식 소형 미장로봇의 주행 알고리즘 개발 (Development of moving algorithm about concrete floor finishing robot with two trowels)

  • 우광식;이호길;강민성;송재복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.614-617
    • /
    • 2004
  • The construction industry is typical of the ' job of 3D ', the automated construction equipments are getting used in the domestic construction sites and the construction robots began to be sold in the abroad. The research developed the small sized robot which could be used at the apartments and the office buildings with the small floors. But the past finishing robot could not be operated easily, it had expensive controller which could not increase the production of robot. In this paper, user interface is made to operate easily the small concrete floor finishing robot with two trowel which has low cost controller, motion algorithm including modeling and mechanism about the concrete finishing robot is developed to control moving. Simulation and experiment figure out how the finishing robot moves and will contribute to realizing it.lizing it.

  • PDF