• Title/Summary/Keyword: Robot Arm

Search Result 622, Processing Time 0.032 seconds

다양한 선 두께들을 인식하고 그리는 로봇 팔 (Robot Arm Recognizing and Drawing Various Line Thicknesses)

  • 조원서;김동한;류근호
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1105-1110
    • /
    • 2013
  • In this paper, a robot arm capable of recognizing and drawing various line thicknesses is developed. Conventional line drawing robots are not capable of adjusting the thickness of lines. However, to draw faster and to enrich the expression of line drawing robots, it is necessary to adjust line thickness using a brush pen. Simple images are acquired and various line thicknesses are recognized by image processing. Trajectories of lines are generated with distance sorting using thinning and corner point detections for each label. Information on line thickness and trajectory is sent to the controller of a robot arm taking into consideration 2D inverse kinematics. Through this process, the robot arm can draw various lines thicknesses along 2D trajectories with 3 motors. Robot arm for detailed drawing will be studied in the future.

High-Precision Contour Control by Gaussian Neural Network Controller for Industrial Articulated Robot Arm with Uncertainties

  • Zhang, Tao;Nakamura, Masatoshi
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.272-282
    • /
    • 2001
  • Uncertainties are the main reasons of deterioration of contour control of industrial articulated robot arm. In this paper, a high-precision contour control method was proposed to overcome some main uncertainties, such as torque saturation, system delay dynamics, interference between robot links, friction, and so on. Firstly, each considered factor of uncertainties was introduced briefly. Then proper realizable objective trajectory generation was presented to avoid torque saturation from objective trajectory. According to the model of industrial articulated robot arm, construction of Gaussian neural network controller with considering system delay dynamic, interference between robot links and friction was explained in detail. Finally, through the experiment and simulation, the effectiveness of proposed method was verified. Furthermore, based on the results it was shown that the Gaussian neural network controller can be also adapted for the various kinds of friction and high-speed motion of industrial articulated robot arm.

  • PDF

직접구동방식 수평다관절형 로봇의 최소 싸이클시간을 갖는 로봇팔의 단면설계 (Design of an Arm Section for a Direct Drive SCARA Robot having the Minimum Cycle Time)

  • Kang, B.S.;Park, K.H.;Kwak, Y.K.
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.165-172
    • /
    • 1995
  • Many algorithms to enhance a speed performance of a robot have been studied, but it's rare to consider disign aspect of a robot arm for time optimal problem. In this paper, section demensions of a robot arm and a velocity profile of an end-effector were optimally designed to minimize the cycle time. Capacity of actuators, deflections of end-effector, and a fundamental natural frequency of the robot arm were constrained in optimal design. For a given path with a trapezoidal velocity profile, torques of each joint were calculated using the inverse kinematics and dynamics. For the SCARA type robot which is mainly used for assembly tasks, the time optimal design of each robot arm id presented with the above constraints.

  • PDF

Machine Learning기법을 이용한 Robot 이상 예지 보전 (Predictive Maintenance of the Robot Trouble Using the Machine Learning Method)

  • 최재성
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.1-5
    • /
    • 2020
  • In this paper, a predictive maintenance of the robot trouble using the machine learning method, so called MT(Mahalanobis Taguchi), was studied. Especially, 'MD(Mahalanobis Distance)' was used to compare the robot arm motion difference between before the maintenance(bearing change) and after the maintenance. 6-axies vibration sensor was used to detect the vibration sensing during the motion of the robot arm. The results of the comparison, MD value of the arm motions of the after the maintenance(bearing change) was much lower and stable compared to MD value of the arm motions of the before the maintenance. MD value well distinguished the fine difference of the arm vibration of the robot. The superior performance of the MT method applied to the prediction of the robot trouble was verified by this experiments.

재난 탐사 및 구조를 위한 로봇팔 설계 및 제어 (Design and Control of Robot Arm for Inspection and Rescue Operations)

  • 강진일;최형식;전봉환;지대형;오지윤;김준영
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.888-894
    • /
    • 2016
  • This paper presents the kinematic and dynamic analysis of the robot arm for inspection and rescue operations. The inspection robot arm has Pitch-Pitch-Pitch-Yaw motion for an optimal and stable view of the camera installed at the end of the manipulator. The rescue operation robot arm has Yaw-Pitch-Pitch-Roll motion to handle heavy tools. Additionally, both robot arms are waterproof, as they use the triple-layer O-ring. Furthermore, the dynamic equation including the damping force due to the mechanical seal for waterproofness was derived by using the Newton-Euler method. A control system using the ARM processor was developed and introduced in this paper, and its performance was verified through experiments.

산업용 로봇 Arm과 휴머노이드 로봇 액터를 연동한 로봇 공연 플랫폼 개발 (Development of Robot Performance Platform Interoperating with an Industrial Robot Arm and a Humanoid Robot Actor)

  • 조자양;김진영;이설희;이상원;김형태
    • 방송공학회논문지
    • /
    • 제25권4호
    • /
    • pp.487-496
    • /
    • 2020
  • 차세대 로봇 공연 기술을 개발하기 위하여 산업용 로봇 arm에 휴머노이드형의 로봇 액터를 부착한 RAoRA (Robot Actor on Robot Arm) 구조를 제안하고, 시스템 연동 제어를 위한 소프트웨어를 탑재하여 로봇 공연 플랫폼을 구축하였다. 로봇 액터와 산업용 로봇 arm의 연동 모션을 위하여 역학적 분석을 수행하고 기계적 메커니즘을 설계 및 제작하였다. 로봇 액터의 동작을 위하여 3D 모델의 기구학적인 분석, spline 위치 보간, 모션 제어 알고리즘 및 제어 장치를 개발하였다. 비전문가도 직관적이고 안전한 공연 콘텐츠를 제작할 수 있도록 사전 시각화, 시뮬레이션 도구 및 콘솔 통합 운영 도구를 개발하였다. 테스트를 위하여 지면에 거의 밀착하여 자연스럽게 걷거나 서서히 공중으로 올라가는 air walk 시연하였고 러닝 타임 5분의 공연에 적용하였다. 그 결과 제안된 로봇 공연 플랫폼은 기존의 로봇 공연에서는 구현이 불가능했던 입체적이고 생동감 있는 모션을 구현할 수 있었다.

수직 다관절 사과수확로봇의 매니퓰레이터 개발 (I) -설계.제작- (Development of Manipulator for Vertically Moving Multi-Joint Apple Harvesting Robot(I) -Design.Manusacturing-)

  • 장익주
    • Journal of Biosystems Engineering
    • /
    • 제25권5호
    • /
    • pp.399-408
    • /
    • 2000
  • This study is final focused on developing fruit harvesting robot can distinguish fruit type and status accurately. Multi-joint robot is able to discriminate tree shape and select mature fruit by image processing. The multi-joint robot consists of (a) rotating base, (b)turning first joint-arm, (c)rotating and turning second joint-arm, (d)rotating and turning third joint-arm, (e)rotating and turning last joint and (f)picker hand. The operational ranges of the robot are: horizontal 860~2,220mm, vertical 1,440~2,260mm, 270 degrees’rotation angle, 90 or 270 degrees’turning angle. The robot weighs 330kg. The multi-joint robot was designed in high accuracy and efficiency by getting as close as the movements of human arms and waist.

  • PDF

On a Posture Control of Human Robot Master Arm

  • Moon, Jin-Soo;Kim, Cheul-U
    • 조명전기설비학회논문지
    • /
    • 제20권9호
    • /
    • pp.24-31
    • /
    • 2006
  • This study developed a human robot mast arm, which has a structure similar to the human arm, with the objective of taking over human works. The robot arm was structured to reproduce human actions using three axes on each of the shoulder and the wrist based on mechanics, and the actuator of each axis adopted an ordinary DC motor. The servo system of the actuator is a one body type employing an amp for electric power, and it was designed to be small and lightweight for easy installation. We examined the posture control characteristics of the developed robot mast arm in order to test its interlocking, continuous motions and reliability.

인명 구조용 로봇의 패들형 말단 장치 설계 및 구현 (Design and Implementation of Paddle Type End of Arm Tool for Rescue Robot)

  • 김현중;이익호;안진웅
    • 로봇학회논문지
    • /
    • 제13권4호
    • /
    • pp.205-212
    • /
    • 2018
  • This paper deals with the paddle type end of arm tool for rescue robot instead of rescue worker in dangerous environments such as fire, earthquake, national disaster and defense. It is equipped at the dual arm manipulator of the rescue robot to safely lift up an injured person. It consists of the paddle for lifting person, sensors for detecting insertion of person onto the paddle, sensor for measuring the tilting angle of the paddle, and mechanical compliance part for preventing incidental injuries. The electronics is comprised of the DAQ module to acquire the sensors data, the control module to treat the sensors data and to manage the errors, and the communication module to transmit the sensors data. After optimally designing the mechanical and electronical parts, we successfully made the paddle type end of arm tool and evaluated its performance by using specially designed jigs. The developed paddle type end of arm tool is going to be applied to the rescue robot for performance verification through field testing.