• Title/Summary/Keyword: Robot,Android

Search Result 35, Processing Time 0.024 seconds

Rapid Implementation of 3D Facial Reconstruction from a Single Image on an Android Mobile Device

  • Truong, Phuc Huu;Park, Chang-Woo;Lee, Minsik;Choi, Sang-Il;Ji, Sang-Hoon;Jeong, Gu-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1690-1710
    • /
    • 2014
  • In this paper, we propose the rapid implementation of a 3-dimensional (3D) facial reconstruction from a single frontal face image and introduce a design for its application on a mobile device. The proposed system can effectively reconstruct human faces in 3D using an approach robust to lighting conditions, and a fast method based on a Canonical Correlation Analysis (CCA) algorithm to estimate the depth. The reconstruction system is built by first creating 3D facial mapping from a personal identity vector of a face image. This mapping is then applied to real-world images captured with a built-in camera on a mobile device to form the corresponding 3D depth information. Finally, the facial texture from the face image is extracted and added to the reconstruction results. Experiments with an Android phone show that the implementation of this system as an Android application performs well. The advantage of the proposed method is an easy 3D reconstruction of almost all facial images captured in the real world with a fast computation. This has been clearly demonstrated in the Android application, which requires only a short time to reconstruct the 3D depth map.

Robot Controller Design with Embedded RTOS (임베디드 RTOS 기반의 로봇 컨트롤러 설계)

  • Hong, Seon Hack;Youn, Jin Sub
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.4
    • /
    • pp.143-151
    • /
    • 2010
  • In this paper, We designed the robot controller with Linux OS, Cygwin under the Marvell Monahan PXA320 embedded platform. Cygwin is a collection of tools for using the Linux-like environment for commercially released x86 32 bit and 64 bit versions of Windows and is a DLL that acts as a Linux API emulation layer providing substantial Linux API functionality. TinyOS-2. x is a component based embedded OS by UC Berkeley and is an open-source OS designed for interfacing the sensor application with specific C-language. The results of experiment are described to show the improvement of sensor interfacing functionality under the PXA320 embedded RTOS platform.

Implementation of autonomous driving algorithm and monitoring application for terrain navigation (지형 탐색 자율주행 알고리즘과 모니터링 애플리케이션 구현)

  • Kang, Jongwon;Jeon, Il-Soo;Kim, Myung-Sik;Lim, Wansu
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.437-444
    • /
    • 2021
  • In this paper, we propose an autonomous driving algorithm that allows a robot to explore various terrains, and implement an application that can monitor the robot's movement path during terrain search. The implemented application consists of a status unit that indicates the position, direction, speed, and motion of the mobile robot, a map unit that displays terrain information obtained through terrain search, and a control unit that controls the movement of the mobile robot. In order to control the movement of the robot, only the start and stop of the search/return is commanded by the application, and all driving for the search is performed autonomously. The basic algorithm for terrain search uses an infrared sensor to check for obstacles in the order of left, front, right, and rear, and if there is no obstacle and the path traveled is a dead end, it returns to the previous position and moves in the other direction to continue the search. Repeat the process to explore the terrain.

Smartphone Accelerometer-Based Gesture Recognition and its Robotic Application (스마트폰 가속도 센서 기반의 제스처 인식과 로봇 응용)

  • Nam, Sang-Ha;Kim, Joo-Hee;Heo, Se-Kyeong;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.6
    • /
    • pp.395-402
    • /
    • 2013
  • We propose an accelerometer-based gesture recognition method for smartphone users. In our method, similarities between a new time series accelerometer data and each gesture exemplar are computed with DTW algorithm, and then the best matching gesture is determined based on k-NN algorithm. In order to investigate the performance of our method, we implemented a gesture recognition program working on an Android smartphone and a gesture-based teleoperating robot system. Through a set of user-mixed and user-independent experiments, we showed that the proposed method and implementation have high performance and scalability.

Development of an Android Robot for a Performance and an Exhibition (공연, 전시를 위한 인간형 로봇 개발)

  • Lee, Dong-wook;Che, Dongwoon;Lee, Duckyeon;Ahn, Hoseok;Hur, Man-hong;Lee, Ho-gil
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.63-64
    • /
    • 2011
  • 본 연구에서는 연극, 뮤지컬 등 공연예술 및 인터랙티브 전시에 활용 가능한 인간형 로봇을 개발내용을 소개한다. 무대에서 활용하기 위한 이동형 하체 모듈과 감정표현이 가능한 얼굴, 제스쳐 표현이 가능한 상체 모듈을 개발하였고, 무대에서 인간과 같은 동작 표현을 위해 모션캡춰를 통하여 모션데이터를 구축하였다. 개발한 로봇을 이용한 공연사례를 제시하고, 인간형 로봇의 활용가능 범위와 발전방향에 대하여 검토한다.

  • PDF

POPULAR : POwer Panoramic vision and Ultra Locomotion with Android support Robot (POPULAR : 안드로이드로 제어하는 높은 이동성의 파노라마 비전 로봇)

  • Sung, Ki-Hyuk;Kim, Jee-Woo;Choi, Min-Soon;Lee, Hong-Gu;Cha, Jae-Won;Kim, Jong-Kook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.46-47
    • /
    • 2012
  • 본 논문은 360도 전방향을 찍을 수 있는 Omni Directional Lens를 장착한 카메라 로봇에 대해 소개한다. 이는 여러 대의 안드로이드 폰으로 원격에서 접속하여 360도 전방의 파노라마 영상을 받아볼 수 있으며, 마스터 권한을 가진 안드로이드 폰의 경우, 카메라 로봇을 원격으로 제어할 수 있다. 이 로봇은 원격에서 무인 감시 시스템 등 여러 가지 영역에서 활용될 수 있다.

Intelligent Home appliances Power Control using Android and Arduino (안드로이드와 아두이노를 이용한 지능형 가전제품 전력 컨트롤)

  • Park, Sung-hyun;Kim, A-Yong;Kim, Wung-Jun;Bae, Keun-Ho;Yoo, Sang-keun;Jung, Hoe-kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.854-856
    • /
    • 2014
  • Has been released of make it possible to control the using for smart devices of a wide variety home appliances and electronics in smart appliances in accordance with the one person multi devices. In addition, is increasing rapidly for the number of the product on cleaning robot and refrigerator, air conditioning, TV, etc. these devices are using the implement up DLNA system. And at home and abroad for development and has provided with Iot and Alljoyn such systems. But currently using home appliances or electronic devices of there are a lot of the operating system non installed than the installed products. In addition, smart appliances do not use for user than buying existing electronic products a lot more. In addition, more occur for smart appliances of that do not use for the user on smart appliances rather than buying existing electronics. In this paper, Suggested and implemented for system of control such as smart devices to existed home appliance on not have an operating system, Using mobile device for want users to quantify the data to transfer from arduino board.

  • PDF

Design and Implementation of Interactive Game based on Embedded System (내장형 시스템 기반 체험형 게임의 설계 및 구현)

  • Lee, Woosik;Jung, Hoejung;Heo, Hojin;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • Embedded System includes touch, GPS, motion, and acceleration sensor, and can communicate with neighbor devices using wireless communication. Because Arduino with embedded system provides good environment for development and application, developers, engineers, designers, as well as artists, students have a great interest. They utilize Arduino in the robot, home appliances, fashion, culture and so on. In this paper, we design and implement a game using Arduino with embedded system which recognizes the human movement by moving away from one-dimensional game of the existing touch method. Implemented embedded system game measures gyro-sensor to recognize human movement and detects the attack success of the opponent by using touch sensor. Moreover, health of the game player is updated in the real time through the android phone-based database. In this paper, implemented embedded system-based game provides GUI screen of android phone. It is possible to select watching mode and competition mode. Also, it has low energy consumption and easy to expand because it send and receive data packet through recent Bluetooth communication.

A Study of Smart Robot Architecture and Movement for Observation of Dangerous Region (위험지역 감시스마트로봇의 설계와 동작에 관한 연구)

  • Koo, Kyung-Wan;Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.83-88
    • /
    • 2013
  • Catastrophic disasters are sprouting out recently, i.e., the radiation leaks and the hydrofluoric acid gas leaks, etc. The restoration work for these kinds of disasters is very harmful and dangerous for human beings to handle themselves, thus allowing manless robots to fly the reconnaissance planes over to the disaster stricken areas and do the necessary work instead. For this endeavor and purpose, we created and tested an intelligent robot that can inspect those areas, using Mbed (ARM processor) technology temperature sensors and gas sensors aided by CAM (Computer-Aided Manufacturing) cameras. Also, HTTP Server, PC, androids and their combined efforts allow their remote controlled operation from far away with timing control. These intelligent robots can be on duty for 24 hours, minimizing the accidents and crimes and what not, and can respond more quickly when these misfortunes actually happen. We can anticipate the economic effects as well, derived from the reduced needs for hiring human resources.

Development of Vehicle Motion Monitoring Module based on Smartphone (스마트폰을 이용한 차량용 주행 모니터링 모듈 개발)

  • Hwang, Jae-Young;Chung, Shin-Il;Chung, Yeon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1903-1909
    • /
    • 2011
  • This paper presents the development of a core module for integrating data from vehicle by the convergence technology of mobile telematics and black-box. This emerging technology can be referred to as Black-box in Mobile (BIM). For the development of BIM, sensors and cameras were realized in a driving robot. Relevant hardware implementation was achieved to verify the functionality of BIM. The transmitted signal from the driving robot was confirmed in an Android-based portable device. Existing Black-boxes were mostly developed by major transportation companies and focused only on storing data. The proposed BIM offers not only data storage but also easy-to-use real-time monitoring while in motion. In addition, the vehicle can be monitored on parking through shock sensors. This development is considered commercially viable as it is achieved via software implementation.