OXEMRYERY =21 HoH H4T-2010H 128

*

Robot Controller Design with Embedded RTOS

Hong, Seon Hack ™« Youn, Jin Sub™

§HHE RTOS 7/¥He 2% HEEFzZ 47

{Abstract)

In this paper, We designed the robot controller with Linux OS, Cygwin under the Marvell
Monahan PXA320 embedded platform. Cygwin is a collection of tools for using the
Linux-like environment for commercially released x86 32 bit and 64 bit versions of Windows
and is a DLL that acts as a Linux API emulation layer providing substantial Linux API
functionality. TinyOS-2. x is a component based embedded OS by UC Berkeley and is an
open-source OS designed for interfacing the sensor application with specific C-language. The
results of experiment are described to show the improvement of sensor interfacing
functionality under the PXA320 embedded RTOS platform.

Key Words : Android Platform, Cygwin, JAVA SDK, TinyOS

I. A&

The Cygwin is a Linux-like environment for
Windows. It consists of a DLL which acts an
emulation layer providing substantial POSIX(Portable
Operating System Interface) system call functionality,
and a collection of tools, which provide a Linux look
and feel. The Cygwin DLL works with all x86 and
AMDG64 versions of Windows NT4. The API the single
Unix specification and then Linux practice. The major
differences between Cygwin and Linux is the C

library. Cygwin began development in 1995 at Cygnus

PE QTE 0093dE A THSEATIANOE 5
YA

= AL AFE AT 2H@AAR

s A AFH AR W

Solutions. The first thing done was to enhance the
development tools(gcc, gdb, gas, etc) so that they
could generate and interpret Win32 native object files.
The next task was to port the tools to Win NT/9x. So
we could have done this by rewriting large portions of
the source to work within the context of the Win32
APL. But this would have meant spending a huge
amount of time on each and every tool. Instead, we
took a substantially different approach by writing a
shared library(the Cygwin DLL) that adds the
necessary UNIX-like functionality missing from the
Win32 API(fork, spawn, signals, sockets, etc). We call
this new interface the Cygwin API[1].

TinyOS is

designed for wireless embedded sensor networks. It

an open-source operating system

HNEMAYEYS =27 143

Robot Controller Design with Embedded RTOS

features a component-based architecture which enables
rapid innovation and implementation while minimizing
code size as required by the severe memory
constraints inherent in sensor networks.

TinyOS's component libarry includes network
protocols, distributed services, and data acquisition
tools - all of which can be used for a custom
application. TinyOS's event-driven execution model
enables fine-grained power management yet allows the
scheduling flexibility made necessary by the
unpredictable nature of wireless communication and

physical interfaces[2-3].

II. Basic Theory

This chapter provides a fundamental overview of
the Hardware Abstraction Architecture(HAA) of
TinyOS. The HAA for TinyOS 2.0 balances the
conflicting requirements of code reusability and
portability on the one hand and efficiency and
performance optimization on the other. Figure 1 shows
the three layer design that gradually adapts the
capabilities of the underlying hardware platforms to
the selected platform-independent hardware interface
between the operating system and the application
code. At the same time, it allows the applications to
utilize a platform’s full capabilities - exported at the
second layer, when the performance requirements

overweigh the need for cross-platform compatibility.

2.1 Architecture

In the proposed architecture of Fig 1, the hardware
abstraction functionality is organized in three distinct

layers(Hardware Presentation/ Adaptation/ Interface

Main(scheduler)

Application

Actiating Sensing | Comminication

Hardware Abstraction (ADC,CLOCK,RFM)

Fig 1. TinyOS Application Layer

layers) of components. Each layer has clearly defined

responsibilities and is dependent on interfaces
provided by lower layers. The capabilities of the
underlying hardware are gradually adapted to the
established platform-independent interface between the
operating and the applications.

The components belonging to the HPL are
positioned directly over the HW/SW interface. As the
name suggests, their major task is to “present” the
capabilities of the hardware using the native concepts
of the operating system. They access the hardware in
the usual way, either by memory or by port mapped
I/O. In the reverse direction, the hardware can request
servicing by signaling an interrupt. The adaptation
layer components represent the core of the
architecture. They use the raw interfaces provided by
the HPL components to build useful abstractions
hiding the complexity naturally associated with the use
of hardware resources. Due to the efficiency
requirements of sensor networks, abstractions at the
HAL level are tailored to the concrete device class and
platform. Instead of hiding the individual features of
the hardware class behind generic models, HAL
interfaces expose specific features and provide the

“best” possible abstraction that streamlines application

144 HEA H42

Robot Controller Design with Embedded RTOS

development while maintaining effective use of
resources. The final tier in the layer is formed by the
HIL components that take the platform-specific
abstractions provided by the HAL and convert them to
hardware-independent interfaces used by
cross-platform applications. These interfaces provide a
platform independent abstraction over the hardware
that simplifies the development of the application

software by hiding the hardware differences[4-6].

2.2 Scheduler and Packet Processing

In TinyOS 2. x, the scheduler is a TinyOS
component. Every scheduler must support C tasks. It
may also support any number of additional task
interfaces. The basic task in TinyOS is parameterless
and FIFO. Tasks continue to follow the C semantics of
task and post, which are linguistic shortcuts for
declaring an interface and wiring it to th scheduler
component.

We use the Mote-PC serial communication with
packet source. This method allow us to collect data
from the network, send commands to motes, and
monitor network trafficc. We use the Java-based
infrastructure for communicating with motes. The basic
abstraction for mote-PC communication is a packet
source. A packet source is exactly that : a
communication medium over which an application can
receive packets from and send packets to a mote.

MIG(Message Interface generator) tool takes three
basic arguments : what programming language to
generate code for (Java, Python, or C), which file in
which to find the structure, and the name of the
structure. The TinyOS toolchain makes this process

easier by providing tools for automatically generating

message objects from packet descriptions. Given a
sequence of bytes, the MIG-generated code will
automatically parse each of the fields in the packet,
and it provides a set of accessors and mutators for
printing out received packets or generating new ones.

Figure 2 illustrates the graphical overview of the
Packet Processing procedure[7-8].

Data Acquired

RF
SENSOR [Packet

Y
Communication Eclipse

Communication USB

MOTE

Fig 2. Packet processing Procedure

2.3 Boot Sequence

The TinyOS boot sequence has four steps
Scheduler
Signal that the boot process has completed, and Run

initialization, Component initialization,
the scheduler. The first boot step is to initialize the
scheduler. If the scheduler were not initialized before
the components, component initialization routines
would not be able to post tasks. While not all
components require tasks to be posted, this gives the
flexibility required for those components that do. The
component initialization is dependencies between
different parts of the system. These are handled in
three ways in TinyOS:
- Hardware specific initialization issues are handled
directly by each platform’s component.
- System services are typically written to be
independently initializable.
- When a service is split into several components, the
init interface for one of these components may well

call Init interfaces of the other components forming

HNEMAYEYS =27 145

Robot Controller Design with Embedded RTOS

the service, if a specific order is needed.

Once all initialization has completed, Boot event is
signaled. Components are now free to call start() and
other commands on any components they are using.

Once the application has been informed that the
system as booted and started needed services. TinyOS
enters its core scheduling loop. The scheduler runs as
long as there are tasks on the queue. As soon as it
detects an empty queue, the scheduler puts the
microcontroller into the lowest power state allowed by

the active hardware resources[9-10].

II. Sensing over the Radio

In this paper, sensing is an integral part of robot’s
sensor applications. Usually sensing involves two tasks
: configuring a sensor and reading the sensor data. The
first task is tricky, because the configuration details of
sensors will be different form platform to platform.
However, the second task - reading the sensor data -
can be solved so that the sensor application can collect
sensor data even though it is agnostic to the platform

it is running on.
3.1 Running the Java GUI

To visualize the sensor reading on our PC, start a
serial forwarder and make sure it connects to the node
on which we have installed in the Base-station
application. At firstt We must have installed the
Oscilloscope application and depending on which
hardware we use, Oscilloscope uses a timer to
periodically sample the default sensor of a platform.

When it has gathered 10 sensor readings, it puts them

into a message and broadcasts that message via the
communication interface. Figure 3 illustrates the

graphical overview of the embedded platform.

PC

MOTE 1 &l
Base .Siak SerialForwarder
Station

SF.Stub

~_ .~

LAN

N/

MOTE 2

Remote PC /
APP

Fig 3. Blockdiagram of embedded platform

3.2 Communication Interface

In this paper, we could use a number of interfaces
to abstract the underlying communications services
and a number of components that provide these
interfaces. All of these interfaces and components use a
common message buffer abstraction, called message t,
which is implemented as a nesC struct. There are a
number of interfaces and components that use
message_t as the underlying data structure.

- Packet : provides the basic accessors for message t
abstract data type. This interface provides commands
for clearing a message’s content’s, getting its payload
length, and getting a pointer to its payload area.

- Send :

sending interface. This interface provides commands

provides the basic address-free message

and cancelling a pending message send, and an
event to indicate whether a message was sent
successfully or not.

- Receive : provides the basic message reception

146 HE2 H42

Robot Controller Design with Embedded RTOS

interface. This interface provides an event for

receiving messages.

Since it is very common to have multiple services
using the same radio to communicate, TinyOS provide
the Active Message(AM) layer to multiplex access to
the radio. Am type are similar in function to the
Ethernet frame type filed, IP protocol filed, and the
UDP port in that all of them are used to multiplex
access to a communication service. AM packets also
includes a destination filed, which stores an “AM

address” to address packets to particular motes[11].

3.3 Sending a Message over the Radio

In this paper, We have defined a message type for
our application. We want a timer-driven system in
which every firing of the timer results in (i)
incrementing a counter, (i) displaying a number of
bits of the counter, and (iii) transmitting the node’s id
and counter value over the radio. To implement this
program, we follow a number of simple steps, as
described in the next procedures. First, we need to
identify the interfaces that provide access to the radio
and allow us to manipulate the message t type.
Second, we must update the module block in the
application nc program by adding uses statements for
the interfaces we need. Third, we need to declare new
variables and add any initialization and start/stop
code that is needed by the interfaces and components.
Fourth, we must add any calls to the component
interface we need for our application. Fifth, we need to
implement any events specified in the interfaces we
plan on using. Sixth, the application configuration
interface must be updated by adding a components

statement for each component we sue that provides

one of the interface we choose earlier. Finally, we need
to wire the interface used by the application to the

components which provide those interfaces[12-15].

Now that we have an application that is
transmitting messages, we could write code that, upon
receiving a message, sets the device of the counter in
the message. If two motes are programmed with our
modified application, then each will display the other’s
mote’s counter value. If the motes go out of range,
then the sensor will stop changing. We can even
investigate link asymmetry by trying to get one mote’s
display to keep blinking while the other mote’s display

stop blinking.
Figure 4 displays the component graph of
GenericComm.
StdControl
StdC_m\(EJl StdControl
7 Senisg N BareSendlMsg

func actvity T

Receivelsg

StdContiol

BareSendMsg

oW Triagrment

PLPowerMenagementl

Fig 4. The component graph of GenericComm

In this figure, StdControl means the standard
control interface, Timer means provides a generic timer
that can be used to generate events at the regular
intervals, and BareSendMsg means functionality for
sending a raw packet buffer :
structure(besides length)[16-17].

unaware of message

ONEMAYEAS =27 147

Robot Controller Design with Embedded RTOS

IV. Embedded Controller Design

In this chapter, we describe the characteristics of
embedded RTOS which
MSP430f1611, mixed signal micro-controller and cc2420,
RF chip.

controllers include

4.1 Mixed Signal Controller

The Texas Instruments MSP430f1611 of ultralow
power micro-controllers consist of several devices
featuring different sets of peripherals targeted for
various applications. The architecture, combined with
five low power modes is optimized to achieve extended
battery life in portable measurement applications. The
device features a powerful 16-bit RISC CPU, 16-bit
registers, and constant generators that attribute to
maximum code efficiency. The digitally controlled
oscillator(DOC) allows wake-up from low-power modes
to active mode in less than 6us. This device has two
built-in 16-bit timers, a fast 12-bit A/D converter, dual
12-bit D/A converter, one or two universal serial
synchronous/ asynchronous communication interfaces
(USART), 7? ¢, DMA, and 48 1/0O pins, In addition, it
offers extended RAM addressing for memory-intensive

applications and large C-stack requirements.

The RF chip, cc2420 has high performance and low
power 8051 micro-controller core, and 24GHz IEEE
802.1.5.4 compliant RF transceiver. This device has 32,
64, or 128 KB in-system programmable flash, and 8KB
SRAM, 4KB with data retention in all power modes.
We use only a single crystal needed for mesh network
systems and two powerful USARTs with support for

several serial protocols[18-19].

4.2 NesC Language

In this paper, we implement controller with nesC
which is a new language for programming structured
component-based applications. The nesC language is
primarily intended for embedded systems such as
sensor networks. nesC has a Clike syntax, but
supports the TinyOS concurrency model, as well as
mechanisms for structuring, naming, and linking
together software components into robust network
embedded systems. The nesC has a several features.
First, nesC applications are built out of components
Second,

nesC defines a concurrency model, based on tasks and

with well-defined, bidirectional interfaces.

hardware event handlers, and detects data races at

compile time.

There are two types of components in nesC:

modules and configurations. Modules provide
application code, implementing one or more interface.
Configurations are used to assemble other components
together, connecting interfaces used by components to
interfaces provided by others. This is called wiring,
Every nesC application is described by a top-level
configuration that wires together the components
inside. In nesC, downcalls are generally commands,
while upcalls are events. An interface specifies both
sides of this relationship.

Figure 5. shows the Internal procedure of sensor
available on the msp430-based platforms.

In this procedure we use the NI object file which
could generate the native code(libhello-jni. so) for
Android and JNI source file(hello-jni. ¢) which control

external device for serial communications.

148 HE2 H42

Robot Controller Design with Embedded RTOS

mWidgetl.Create

XYAxis(axis);
mlinelsetlinel
nnerData(tmp);

¥

mWidgetl Updat
eLine(mlinel);

Android Platform
f (Embedded 320tku)

int parse_value(char* dst, . void
char *src, int len) onCreate();

Fig 5. Configuration of Internal Procedure

4.3 Sensor Applications

We implemented the embedding sensor controller
with ADXL311 which is provided with Analog Devices
company. The ADXL311 is a dual-axis acceleration
measurement system on a single monolithic IC. The
output signals are analog voltage proportional to
acceleration and are capable of measuring both
positive and negative accelerations to at least +2g.
The accelerometer can measure static acceleration
forces, such as gravity, allowing it to be used as a tilt
sensor. We used the ADXL311 as a tilt measurement of
embedded robot controller. One of the most popular
applications is tilt sensing device.

An accelerometer uses the force of gravity as an
input vector to determine the orientation of an object
in space [20-21].

Figure 6 shows the experimental result with Sensor
network, ADX311 to be used as a tilt sensor in the
embedded controller. These images would pop up a
window containing a graphical display of the sensor

readings from the sensor board. It connects to the

serial forwarder over the network and retrieves packet
data, parses the sensor readings from each packet, and

draws the information on the graph.

8 oscilloscope B@

[NN NN,

Zoom InX | {

Zoom n¥

I hex Axis
v ‘Serolling

Cantra| Pane]

Zoom OutK Zoom outY

< | Reset| > |
EditLegend | ¥ Shaw Legend v
Clear Dataset | IV Conrisct Datapoints

Save Dala Load Data

Fig 6. Acceleration Sensor Result

The x-axis of the graph is the packet counter
number and the y-axis is the sensor reading. There are
several function keys to adjust the graph image which
can be changed with Zoom In and Out, Clear or Load
Data, and Scrolling bars[22-23].

Figure 7 shows the Data-logging result for
temperature and humidity for H-mote sensors with the
Android platform embedded PXA320 interfacing
USN(User Sensor Network) vis RF communication.

At first, we used the log-Cat functions with Eclipse
for verifying the sensor data, and then setup the user

interfacing Java program for sensor data as below

Figure 7.

HNEMAYEYS =27 149

Robot Controller Design with Embedded RTOS

Fig 7. Sensing Data for Android Platform

V. Conclusions

In this paper, we made the robot controller with
embedded system. This controller, as a TinyOS
platform sensor based system to be used under the
Marvell PXA320 embedded platform, is implemented
by TinyOS environment. TinyOS-2. x is a component
based embedded system and is an open-source basis
for interfacing with accelerometer sensor application.

The experiments are described to show the
improvement of sensor interfacing functionality under
the PXA320 embedded RTOS platform.

For flexibility and expandability, the designed
platform has many expansion ports. The results of
experiment are described to show the flexibility of
mobile devices, such as smart phone or portable
electronics devices for Android. We will experiment
the results of this paper in detail to be broaden the

scope of sensor interface and design considerations.

3]

[4]

[5]

[6]

7]

18]

]

[10]

[11]

[12]

[13]

[14]

3, CygwinZ 37 wi$-= C Z2add, &5
2}, 02. 2010.

Levis, Philip, TinyOS Programming, Cambridge
University Press, 04. 2009

Matischek, Rainer, A TinyOS-Based Ad Hoc
Wireless Sensor Network, VDM Verlag, 07. 2008.
Marvell PXA320 Processor, Graphics and Input
Controller, December 14, 2006.

Marvell PXA320 Processor, Serial Controller
Configuration, December 15, 2006.

Mary Campione, Kathy Walrath, The Java
Tutorial, Object-Oriented Programming for the
Internet, Addison-Wesley, 2001.

AEzE 197], ¥4, “Java 7|8 AAZHIA G
o[H2EHA D] 3§ delt= Al2g] 74, "AE
AR E 3, 47, 28, 2008.

Summerfield, Mark, Programming in Python 3,
Addison-Wesley Professional, 11. 2009.

Philip Levis, TinyOS 2.0 Overview, Computer
Systems Laboratory Stanford University, 10. 2006.
Philip Levis,
Computer
University, 10. 2006.

A, “UML7|te] Bejgetd =24, =%
2183]” A|33H, AI10Z, 2008, pp. 343-349.
A, "GUISHE & 2te HAIEE o] E 2 A o]
e absetsl, Al43¥, 1EH, 2143, 2006, pp.
340-347.

AT “ANARE o] 8 o] FREA] tigA
A4g-et3], #4279, TEH, #1232, 2005, pp. 91-98.
o] §g olFEIA o], et

TEH, 4%, 2005 pp.

e

TinyOS Programming Guide,

Systems Laboratory Stanford

AAEY
201-208.

, A3,

150 Hg2 H42

Robot Controller Design with Embedded RTOS

[17]

[18]

[19]

[20]

(21]

(23]

A" AR E g3, #54, 43, 2009.
2 B 3 “ZigbeeS o] 43 AL&Al
Q27| AAaA A 2" FE)” YA A E

Philip Levis, Simulating TinyOS Applications in
TOSSIM, Computer Systems Laboratory Stanford
University, 08. 2003.

Nagy, Chris, Embedded Systems Design Using
the Ti Msp430 Series, Newnes, 09. 2003.

Luecke, Jerry, Analog and Digital Circuits for
Electronic Control System Applications, Newnes,
09. 2004.

Philippe Coiffet, An Introduction to ROBOT
TECHNOLOGY, 1982.
PXA320_Monahans_P_DM_Vol[1]+Rev_0.95
System and Timer Developers, 11, 7, 2006.

Reto Meyer, Professional Android 2 Application
Development, Wrox, 02. 2010.

Wirfs-Brock,. R, Wilkerson. Designing Object-
Oriented Software, Englewood Cliffs, NJ.
Prentice-Hall. 2002.

Ve
N
£49
Hong, Seon Hack

A2 7 .

19854
19884
19944

19924 ~84 A 903 ARe AT 15

olrt

BT 1 Aol AFASE, 23 2
E-mail : hongsh@seoil.ac.kr

Mg A5
200241 24 TEggw A
AR} ARIE
E-mal : js22y@seoilac.kr

2520109 8% 319
4920109 10€

AAZAL : 20104 119 189

=
159(14), 112 109(24)
]

LA

ot

=

9 =2A 151

