
디지털산업정보학회 논문지 제6권 제4호-2010년 12월

디지털산업정보학회 논문지 143

Robot Controller Design with Embedded RTOS*

Hong, Seon Hack**ㆍYoun, Jin Sub***

임베디드 RTOS 기반의 로봇 컨트롤러 설계

홍 선 학ㆍ윤 진 섭
<Abstract>

In this paper, We designed the robot controller with Linux OS, Cygwin under the Marvell

Monahan PXA320 embedded platform. Cygwin is a collection of tools for using the

Linux-like environment for commercially released x86 32 bit and 64 bit versions of Windows

and is a DLL that acts as a Linux API emulation layer providing substantial Linux API

functionality. TinyOS-2. x is a component based embedded OS by UC Berkeley and is an

open-source OS designed for interfacing the sensor application with specific C-language. The

results of experiment are described to show the improvement of sensor interfacing

functionality under the PXA320 embedded RTOS platform.

Key Words : Android Platform, Cygwin, JAVA SDK, TinyOS

Ⅰ. 서론
1)

The Cygwin is a Linux-like environment for

Windows. It consists of a DLL which acts an

emulation layer providing substantial POSIX(Portable

Operating System Interface) system call functionality,

and a collection of tools, which provide a Linux look

and feel. The Cygwin DLL works with all x86 and

AMD64 versions of Windows NT4. The API the single

Unix specification and then Linux practice. The major

differences between Cygwin and Linux is the C

library. Cygwin began development in 1995 at Cygnus

　*본 연구는 2009학년도 서일대학 교내학술연구비지원으로 수

행되었음

　** 서일대학 컴퓨터전자과 교수(교신저자)

*** 서일대학 컴퓨터전자과 교수

Solutions. The first thing done was to enhance the

development tools(gcc, gdb, gas, etc) so that they

could generate and interpret Win32 native object files.

The next task was to port the tools to Win NT/9x. So

we could have done this by rewriting large portions of

the source to work within the context of the Win32

API. But this would have meant spending a huge

amount of time on each and every tool. Instead, we

took a substantially different approach by writing a

shared library(the Cygwin DLL) that adds the

necessary UNIX-like functionality missing from the

Win32 API(fork, spawn, signals, sockets, etc). We call

this new interface the Cygwin API[1].

TinyOS is an open-source operating system

designed for wireless embedded sensor networks. It

Robot Controller Design with Embedded RTOS

144 제6권 제4호

Fig 1. TinyOS Application Layer

features a component-based architecture which enables

rapid innovation and implementation while minimizing

code size as required by the severe memory

constraints inherent in sensor networks.

TinyOS's component libarry includes network

protocols, distributed services, and data acquisition

tools - all of which can be used for a custom

application. TinyOS's event-driven execution model

enables fine-grained power management yet allows the

scheduling flexibility made necessary by the

unpredictable nature of wireless communication and

physical interfaces[2-3].

Ⅱ. Basic Theory
This chapter provides a fundamental overview of

the Hardware Abstraction Architecture(HAA) of

TinyOS. The HAA for TinyOS 2.0 balances the

conflicting requirements of code reusability and

portability on the one hand and efficiency and

performance optimization on the other. Figure 1 shows

the three layer design that gradually adapts the

capabilities of the underlying hardware platforms to

the selected platform-independent hardware interface

between the operating system and the application

code. At the same time, it allows the applications to

utilize a platform's full capabilities - exported at the

second layer, when the performance requirements

overweigh the need for cross-platform compatibility.

2.1 Architecture
In the proposed architecture of Fig 1, the hardware

abstraction functionality is organized in three distinct

layers(Hardware Presentation/ Adaptation/ Interface

layers) of components. Each layer has clearly defined

responsibilities and is dependent on interfaces

provided by lower layers. The capabilities of the

underlying hardware are gradually adapted to the

established platform-independent interface between the

operating and the applications.

The components belonging to the HPL are

positioned directly over the HW/SW interface. As the

name suggests, their major task is to “present” the

capabilities of the hardware using the native concepts

of the operating system. They access the hardware in

the usual way, either by memory or by port mapped

I/O. In the reverse direction, the hardware can request

servicing by signaling an interrupt. The adaptation

layer components represent the core of the

architecture. They use the raw interfaces provided by

the HPL components to build useful abstractions

hiding the complexity naturally associated with the use

of hardware resources. Due to the efficiency

requirements of sensor networks, abstractions at the

HAL level are tailored to the concrete device class and

platform. Instead of hiding the individual features of

the hardware class behind generic models, HAL

interfaces expose specific features and provide the

“best” possible abstraction that streamlines application

Robot Controller Design with Embedded RTOS

디지털산업정보학회 논문지 145

Fig 2. Packet processing Procedure

development while maintaining effective use of

resources. The final tier in the layer is formed by the

HIL components that take the platform-specific

abstractions provided by the HAL and convert them to

hardware-independent interfaces used by

cross-platform applications. These interfaces provide a

platform independent abstraction over the hardware

that simplifies the development of the application

software by hiding the hardware differences[4-6].

 2.2 Scheduler and Packet Processing
In TinyOS 2. x, the scheduler is a TinyOS

component. Every scheduler must support C tasks. It

may also support any number of additional task

interfaces. The basic task in TinyOS is parameterless

and FIFO. Tasks continue to follow the C semantics of

task and post, which are linguistic shortcuts for

declaring an interface and wiring it to th scheduler

component.

We use the Mote-PC serial communication with

packet source. This method allow us to collect data

from the network, send commands to motes, and

monitor network traffic. We use the Java-based

infrastructure for communicating with motes. The basic

abstraction for mote-PC communication is a packet

source. A packet source is exactly that : a

communication medium over which an application can

receive packets from and send packets to a mote.

MIG(Message Interface generator) tool takes three

basic arguments : what programming language to

generate code for (Java, Python, or C), which file in

which to find the structure, and the name of the

structure. The TinyOS toolchain makes this process

easier by providing tools for automatically generating

message objects from packet descriptions. Given a

sequence of bytes, the MIG-generated code will

automatically parse each of the fields in the packet,

and it provides a set of accessors and mutators for

printing out received packets or generating new ones.

Figure 2 illustrates the graphical overview of the

Packet Processing procedure[7-8].

2.3 Boot Sequence
The TinyOS boot sequence has four steps :

Scheduler initialization, Component initialization,

Signal that the boot process has completed, and Run

the scheduler. The first boot step is to initialize the

scheduler. If the scheduler were not initialized before

the components, component initialization routines

would not be able to post tasks. While not all

components require tasks to be posted, this gives the

flexibility required for those components that do. The

component initialization is dependencies between

different parts of the system. These are handled in

three ways in TinyOS:

- Hardware specific initialization issues are handled

directly by each platform's component.

- System services are typically written to be

independently initializable.

- When a service is split into several components, the

init interface for one of these components may well

call Init interfaces of the other components forming

Robot Controller Design with Embedded RTOS

146 제6권 제4호

Fig 3. Blockdiagram of embedded platform

the service, if a specific order is needed.

Once all initialization has completed, Boot event is

signaled. Components are now free to call start() and

other commands on any components they are using.

Once the application has been informed that the

system as booted and started needed services. TinyOS

enters its core scheduling loop. The scheduler runs as

long as there are tasks on the queue. As soon as it

detects an empty queue, the scheduler puts the

microcontroller into the lowest power state allowed by

the active hardware resources[9-10].

Ⅲ. Sensing over the Radio
In this paper, sensing is an integral part of robot's

sensor applications. Usually sensing involves two tasks

: configuring a sensor and reading the sensor data. The

first task is tricky, because the configuration details of

sensors will be different form platform to platform.

However, the second task - reading the sensor data -

can be solved so that the sensor application can collect

sensor data even though it is agnostic to the platform

it is running on.

3.1 Running the Java GUI
To visualize the sensor reading on our PC, start a

serial forwarder and make sure it connects to the node

on which we have installed in the Base-station

application. At first, We must have installed the

Oscilloscope application and depending on which

hardware we use, Oscilloscope uses a timer to

periodically sample the default sensor of a platform.

When it has gathered 10 sensor readings, it puts them

into a message and broadcasts that message via the

communication interface. Figure 3 illustrates the

graphical overview of the embedded platform.

3.2 Communication Interface
In this paper, we could use a number of interfaces

to abstract the underlying communications services

and a number of components that provide these

interfaces. All of these interfaces and components use a

common message buffer abstraction, called message_t,

which is implemented as a nesC struct. There are a

number of interfaces and components that use

message_t as the underlying data structure.

- Packet : provides the basic accessors for message_t

abstract data type. This interface provides commands

for clearing a message's content's, getting its payload

length, and getting a pointer to its payload area.

- Send : provides the basic address-free message

sending interface. This interface provides commands

and cancelling a pending message send, and an

event to indicate whether a message was sent

successfully or not.

- Receive : provides the basic message reception

Robot Controller Design with Embedded RTOS

디지털산업정보학회 논문지 147

Fig 4. The component graph of GenericComm

interface. This interface provides an event for

receiving messages.

Since it is very common to have multiple services

using the same radio to communicate, TinyOS provide

the Active Message(AM) layer to multiplex access to

the radio. Am type are similar in function to the

Ethernet frame type filed, IP protocol filed, and the

UDP port in that all of them are used to multiplex

access to a communication service. AM packets also

includes a destination filed, which stores an “AM

address” to address packets to particular motes[11].

3.3 Sending a Message over the Radio
In this paper, We have defined a message type for

our application. We want a timer-driven system in

which every firing of the timer results in (i)

incrementing a counter, (ii) displaying a number of

bits of the counter, and (iii) transmitting the node's id

and counter value over the radio. To implement this

program, we follow a number of simple steps, as

described in the next procedures. First, we need to

identify the interfaces that provide access to the radio

and allow us to manipulate the message_t type.

Second, we must update the module block in the

application nc program by adding uses statements for

the interfaces we need. Third, we need to declare new

variables and add any initialization and start/stop

code that is needed by the interfaces and components.

Fourth, we must add any calls to the component

interface we need for our application. Fifth, we need to

implement any events specified in the interfaces we

plan on using. Sixth, the application configuration

interface must be updated by adding a components

statement for each component we sue that provides

one of the interface we choose earlier. Finally, we need

to wire the interface used by the application to the

components which provide those interfaces[12-15].

Now that we have an application that is

transmitting messages, we could write code that, upon

receiving a message, sets the device of the counter in

the message. If two motes are programmed with our

modified application, then each will display the other's

mote's counter value. If the motes go out of range,

then the sensor will stop changing. We can even

investigate link asymmetry by trying to get one mote's

display to keep blinking while the other mote's display

stop blinking.

Figure 4 displays the component graph of

GenericComm.

In this figure, StdControl means the standard

control interface, Timer means provides a generic timer

that can be used to generate events at the regular

intervals, and BareSendMsg means functionality for

sending a raw packet buffer : unaware of message

structure(besides length)[16-17].

Robot Controller Design with Embedded RTOS

148 제6권 제4호

Ⅳ. Embedded Controller Design
In this chapter, we describe the characteristics of

embedded RTOS controllers which include

MSP430f1611, mixed signal micro-controller and cc2420,

RF chip.

4.1 Mixed Signal Controller
The Texas Instruments MSP430f1611 of ultralow

power micro-controllers consist of several devices

featuring different sets of peripherals targeted for

various applications. The architecture, combined with

five low power modes is optimized to achieve extended

battery life in portable measurement applications. The

device features a powerful 16-bit RISC CPU, 16-bit

registers, and constant generators that attribute to

maximum code efficiency. The digitally controlled

oscillator(DOC) allows wake-up from low-power modes

to active mode in less than 6 . This device has two

built-in 16-bit timers, a fast 12-bit A/D converter, dual

12-bit D/A converter, one or two universal serial

synchronous/ asynchronous communication interfaces

(USART),  , DMA, and 48 I/O pins, In addition, it

offers extended RAM addressing for memory-intensive

applications and large C-stack requirements.

The RF chip, cc2420 has high performance and low

power 8051 micro-controller core, and 2.4GHz IEEE

802.1.5.4 compliant RF transceiver. This device has 32,

64, or 128 KB in-system programmable flash, and 8KB

SRAM, 4KB with data retention in all power modes.

We use only a single crystal needed for mesh network

systems and two powerful USARTs with support for

several serial protocols[18-19].

4.2 NesC Language
In this paper, we implement controller with nesC

which is a new language for programming structured

component-based applications. The nesC language is

primarily intended for embedded systems such as

sensor networks. nesC has a C-like syntax, but

supports the TinyOS concurrency model, as well as

mechanisms for structuring, naming, and linking

together software components into robust network

embedded systems. The nesC has a several features.

First, nesC applications are built out of components

with well-defined, bidirectional interfaces. Second,

nesC defines a concurrency model, based on tasks and

hardware event handlers, and detects data races at

compile time.

There are two types of components in nesC:

modules and configurations. Modules provide

application code, implementing one or more interface.

Configurations are used to assemble other components

together, connecting interfaces used by components to

interfaces provided by others. This is called wiring.

Every nesC application is described by a top-level

configuration that wires together the components

inside. In nesC, downcalls are generally commands,

while upcalls are events. An interface specifies both

sides of this relationship.

Figure 5. shows the Internal procedure of sensor

available on the msp430-based platforms.

In this procedure we use the JNI object file which

could generate the native code(libhello-jni. so) for

Android and JNI source file(hello-jni. c) which control

external device for serial communications.

Robot Controller Design with Embedded RTOS

디지털산업정보학회 논문지 149

Fig 5. Configuration of Internal Procedure

Fig 6. Acceleration Sensor Result

4.3 Sensor Applications
We implemented the embedding sensor controller

with ADXL311 which is provided with Analog Devices

company. The ADXL311 is a dual-axis acceleration

measurement system on a single monolithic IC. The

output signals are analog voltage proportional to

acceleration and are capable of measuring both

positive and negative accelerations to at least ± .

The accelerometer can measure static acceleration

forces, such as gravity, allowing it to be used as a tilt

sensor. We used the ADXL311 as a tilt measurement of

embedded robot controller. One of the most popular

applications is tilt sensing device.

An accelerometer uses the force of gravity as an

input vector to determine the orientation of an object

in space [20-21].

Figure 6 shows the experimental result with Sensor

network, ADX311 to be used as a tilt sensor in the

embedded controller. These images would pop up a

window containing a graphical display of the sensor

readings from the sensor board. It connects to the

serial forwarder over the network and retrieves packet

data, parses the sensor readings from each packet, and

draws the information on the graph.

The x-axis of the graph is the packet counter

number and the y-axis is the sensor reading. There are

several function keys to adjust the graph image which

can be changed with Zoom In and Out, Clear or Load

Data, and Scrolling bars[22-23].

Figure 7 shows the Data-logging result for

temperature and humidity for H-mote sensors with the

Android platform embedded PXA320 interfacing

USN(User Sensor Network) vis RF communication.

At first, we used the log-Cat functions with Eclipse

for verifying the sensor data, and then setup the user

interfacing Java program for sensor data as below

Figure 7.

Robot Controller Design with Embedded RTOS

150 제6권 제4호

Fig 7. Sensing Data for Android Platform

Ⅴ. Conclusions
In this paper, we made the robot controller with

embedded system. This controller, as a TinyOS

platform sensor based system to be used under the

Marvell PXA320 embedded platform, is implemented

by TinyOS environment. TinyOS-2. x is a component

based embedded system and is an open-source basis

for interfacing with accelerometer sensor application.

The experiments are described to show the

improvement of sensor interfacing functionality under

the PXA320 embedded RTOS platform.

For flexibility and expandability, the designed

platform has many expansion ports. The results of

experiment are described to show the flexibility of

mobile devices, such as smart phone or portable

electronics devices for Android. We will experiment

the results of this paper in detail to be broaden the

scope of sensor interface and design considerations.

참고문헌
[1] 김명호, Cygwin과 함께 배우는 C 프로그래밍, 홍릉

출판사, 02. 2010.

[2] Levis, Philip, TinyOS Programming, Cambridge

University Press, 04. 2009

[3] Matischek, Rainer, A TinyOS-Based Ad Hoc

Wireless Sensor Network, VDM Verlag, 07. 2008.

[4] Marvell PXA320 Processor, Graphics and Input

Controller, December 14, 2006.

[5] Marvell PXA320 Processor, Serial Controller

Configuration, December 15, 2006.

[6] Mary Campione, Kathy Walrath, The Java

Tutorial, Object-Oriented Programming for the

Internet, Addison-Wesley, 2001.

[7] 김휴찬, 고완기, 박상열, “Java 기반 실시간센서 데

이터스트림처리 및 임베디드 시스템 구현,” 디지털

산업정보 학회, 4권, 2호, 2008.

[8] Summerfield, Mark, Programming in Python 3,

Addison-Wesley Professional, 11. 2009.

[9] Philip Levis, TinyOS 2.0 Overview, Computer

Systems Laboratory Stanford University, 10. 2006.

[10] Philip Levis, TinyOS Programming Guide,

Computer Systems Laboratory Stanford

University, 10. 2006.

[11] 홍선학, “UML기반의 창의공학용 로봇설계, 한국통

신학회,” 제33권, 제10호, 2008, pp. 343-349.

[12] 홍선학, “GUI환경을 갖는 퍼지기반 이동로봇제어,”

대한전자공학회, 제43권, IE편, 제4호, 2006, pp.

340-347.

[13] 홍선학, “센서결합을 이용한 이동로봇제어,” 대한전

자공학회, 제42권, TE편, 제2호, 2005, pp. 91-98.

[14] 홍선학, “영상 추적을 이용한 이동로봇제어,” 대한

전자공학회, 제42권, TE편, 제4호, 2005, pp.

201-208.

Robot Controller Design with Embedded RTOS

디지털산업정보학회 논문지 151

홍 선 학
Hong, Seon Hack

1985년 광운대학교 전기공학과 학사졸업
1988년 광운대학교 전기공학과 석사졸업.
1994년 광운대학교 대학원 박사 졸업.
1992년~현재 서일대학 컴퓨터전자과 교수
관심분야 : 제어, 컴퓨터응용, 로봇 분야 등
E-mail : hongsh@seoil.ac.kr

윤 진 섭
Youn, Jin Sub

1991년 9월~현재
서일대학 컴퓨터전자과 교수

2002년 2월 동국대학교 전자공학과 (공학박사)
관심분야 : 정보기술
E-mail : js22y@seoil.ac.kr

논문접수일 : 2010년 8월 31일
수 정 일 : 2010년 10월 15일(1차), 11월 10일(2차)
게재확정일 : 2010년 11월 18일

[15] 홍선학, “MCU 플랫폼 창의 공학용 로봇 설계,” 디

지털 산업정보 학회, 제5권, 4호, 2009.

[16] 김정원, 신진철, 박형근, “Zigbee를 이용한 사용자

인식기반의 헬스케어시스템구현,” 디지털 산업정보

학회, 4권, 3호, 2008.

[17] Philip Levis, Simulating TinyOS Applications in

TOSSIM, Computer Systems Laboratory Stanford

University, 08. 2003.

[18] Nagy, Chris, Embedded Systems Design Using

the Ti Msp430 Series, Newnes, 09. 2003.

[19] Luecke, Jerry, Analog and Digital Circuits for

Electronic Control System Applications, Newnes,

09. 2004.

[20] Philippe Coiffet, An Introduction to ROBOT

TECHNOLOGY, 1982.

[21] PXA320_Monahans_P_DM_Vol[1]+Rev_0.95

System and Timer Developers, 11, 7, 2006.

[22] Reto Meyer, Professional Android 2 Application

Development, Wrox, 02. 2010.

[23] Wirfs-Brock,. R., Wilkerson. Designing Object-

Oriented Software, Englewood Cliffs, NJ. :

Prentice-Hall. 2002.

▪저자소개▪

