• Title/Summary/Keyword: Road maintenance

Search Result 576, Processing Time 0.022 seconds

Analysis on the Characteristics of Construction Practice Information Using Text Mining: Focusing on Information Such as Construction Technology, Cases, and Cost Reduction (텍스트마이닝을 활용한 건설실무정보의 특성 분석 - 건설기술, 사례, 원가절감 등 정보를 중심으로 -)

  • Seong-Yun, Jeong;Jin-Uk, Kim
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.56 no.4
    • /
    • pp.205-222
    • /
    • 2022
  • This study aims to improve the information service so that construction engineers and construction project participants without specialized knowledge can easily understand the important words and the interrelationships between them in construction practice. To this end, using text mining and network centrality, the frequency of occurrence of words, topic modeling, and network centrality in construction practice information such as technical information, case information, and cost reduction, which are most used in the Construction Technology Digital Library, were analyzed. Through this analysis, design, construction, project management, specifications, standards, and maintenance related to road construction such as roads, pavements, bridges, and tunnels were identified as important in construction practice. In addition, correlations were analyzed for words with high importance by measuring Degree Centrality and Eigenvector Centrality. The result was that more useful information could be provided if the technical information was expanded. Finally, we presented the limitations of the study results and additional studies according to the limitations.

Evolving live load criteria in bridge design code guidelines - A case study of India based on IRC 6

  • Karthik, P.;Sharma, Shashi Kant;Akbar, M. Abdul
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.43-57
    • /
    • 2022
  • One of the instances which demand structural engineer's greatest attention and upgradation is the changing live load requirement in bridge design code. The challenge increases in developing countries as the pace of infrastructural growth is being catered by the respective country codes with bigger and heavier vehicles to be considered in the design. This paper presents the case study of India where Indian Roads Congress (IRC) codes in its revised version from 2014 to 2017 introduced massive Special vehicle (SV) around 40 m long and weighing 3850 kN to be considered in the design of road bridges. The code does not specify the minimum distance between successive special vehicles unlike other loading classes and hence the consequences of it form the motivation for this study. The effect of SV in comparison with Class 70R, Class AA, Class A, and Class B loading is studied based on the maximum bending moment with moving load applied in Autodesk Robot Structural Analysis. The spans considered in the analysis varied from 10 m to 1991 m corresponding to the span of Akashi Kaikyo Bridge (longest bridge span in the world). A total of 182 analyses for 7 types of vehicles (class B, class A, class 70R tracked, class 70R wheeled, class AA tracked, AA wheeled, and Special vehicle) on 26 different span lengths is carried out. The span corresponding to other vehicles which would equal the bending moment of a single SV is presented along with a comparison relative to Standard Uniformly Distributed Load. Further, the results are presented by introducing a new parameter named Intensity Factor which is proven to relate the effect of axle spacing of vehicle on the normalized bending moment developed.

Vehicle control system base on the low power long distance communication technology(NB-IoT)

  • Kim, Sam-Taek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.117-122
    • /
    • 2022
  • In this paper, we developed a vehicle control terminal using IoT and low-power long-distance communication (NB-IoT) technology. This system collects information on the location and status of a parked vehicle, and transmits the vehicle status to the vehicle owner's terminal in real time with low power to prevent vehicle theft, and in the case of a vehicle in motion, When primary information about the vehicle, such as an impact, is collected and transmitted to the server, the server analyzes the relevant data to generate secondary information on traffic congestion, road damage, and safety accidents. By sending it, you can know the exact arrival time of the vehicle at its destination. This terminal device is an IoT gateway for a vehicle and can be connected to various wired and wireless sensors inside the vehicle. In addition, the data collected from vehicle maintenance, efficient operation, and vehicles can be usefully used in the private or public sector.

Bridge Scour Prioritization and Management System (II) - System Verification - (교량세굴 위험도 결정 및 유지관리 시스템 개발(II) - 시스템 검증 -)

  • Kwak, Kiseok;Park, Jae Hyun;Yoon, Hyun Suk;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.197-208
    • /
    • 2006
  • Case studies for real bridge sites are performed to verify the applicability of the Bridge Scour Management System in the field. The case studies for 20 bridges in Gangneung District of National Road Management consist of site investigations including the boring tests, bridge scour analyses for the design floods, bearing capacity evaluation of the bridge foundation before and after scour, and comprehensive evaluation of the bridge scour maintenance. The bridge scour management system is verified as an useful tool which can evaluate bridge scour vulnerability quantitatively, and is also proposed as a reasonable system which can help establish effective measures and secure the safety of bridges during floods.

Optimisation of Infrastructure within the Melbourne Urban plan

  • Koorosh Gharehbaghi;Vincent Raso
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.299-303
    • /
    • 2011
  • Congestion is a growing concern of many global cities and the demands on Infrastructure services within a locale coupled by the rising expectations from the growing population places stress on these cities. This entails the ability to build a sustainable community that requires an understanding and recognition of Population growth, changing demographics and the ever changing urban development on both a macro and micro level. Infrastructure is an integral part of Australian economy, particularly the 'Infrastructure Assets Management' which highlights the importance towards the development of sustainable communities for Melbourne's future. Melbourne 2030 is a comprehensive representation of government's response to a wide-ranging population growth within Melbourne metropolitan and surrounding areas. Urban plan and specific Infrastructure Assets Planning needs not only to provide sufficient Infrastructure to a community, but it must also be efficient and innovative so that it produces an optimised management system. A system that incorporates engineering techniques that will be sustainable for decades to come by maintaining an acceptable level of services to its intended community in an effective manner, which also strengthens service delivery. The fundamental challenges for optimization of Infrastructure with the Melbourne urban plan is, the ability to manage and sustain maintenance of Infrastructure to provide the acceptable level of service required by the community in a most effective manner which also strengthens service delivery to contribute towards Melbourne 2030. This paper particularly investigates some of the fundamental issues within the Melbourne urban plan such as Infrastructure Asset Management, AusLink and the Australian Road Management Act 2004, which the Governments at all levels must deal with to provide an economically viable solution to the changing Infrastructure so it may suits the needs and services the strategies of a metropolis.

  • PDF

Developing girder distribution factors in bridge analysis through B-WIM measurements: An empirical study

  • Widi Nugraha;Winarputro Adi Riyono;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.207-220
    • /
    • 2023
  • The safety of bridges are critical in our transportation infrastructure. Bridge design and analysis require complex structural analysis procedures to ensure their safety and stability. One common method is to calculate the maximum moment in the girders to determine the appropriate bridge section. Girder distribution factors (GDFs) provide a simpler approach for performing this analysis. A GDF is a ratio between the response of a single girder and the total response of all girders in the bridge. This paper explores the significance of GDFs in bridge analysis and design, including their importance in the evaluation of existing bridges. We utilized Bridge Weigh-in-motion (B-WIM) measurements of five simple supported girder bridge in Indonesia to develop a simple GDF provisions for the Indonesia's bridge design code. The B-WIM measurements enable us to know each girder strain as a response due to vehicle loading as the vehicle passes the bridge. The calculated GDF obtained from the B-WIM measurements were compared with the code-specified GDF and the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge design specification. Our study found that the code specified GDF was adequate or conservative compared to the GDF obtained from the B-WIM measurements. The proposed GDF equation correlates well with the AASHTO LRFD bridge design specification. Developing appropriate provisions for GDFs in Indonesian bridge design codes can provides a practical solution for designing girder bridges in Indonesia, ensuring safety while allowing for easier calculations and assessments based on B-WIM measurements.

Comparison of regression model and LSTM-RNN model in predicting deterioration of prestressed concrete box girder bridges

  • Gao Jing;Lin Ruiying;Zhang Yao
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.39-47
    • /
    • 2024
  • Bridge deterioration shows the change of bridge condition during its operation, and predicting bridge deterioration is important for implementing predictive protection and planning future maintenance. However, in practical application, the raw inspection data of bridges are not continuous, which has a greater impact on the accuracy of the prediction results. Therefore, two kinds of bridge deterioration models are established in this paper: one is based on the traditional regression theory, combined with the distribution fitting theory to preprocess the data, which solves the problem of irregular distribution and incomplete quantity of raw data. Secondly, based on the theory of Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN), the network is trained using the raw inspection data, which can realize the prediction of the future deterioration of bridges through the historical data. And the inspection data of 60 prestressed concrete box girder bridges in Xiamen, China are used as an example for validation and comparative analysis, and the results show that both deterioration models can predict the deterioration of prestressed concrete box girder bridges. The regression model shows that the bridge deteriorates gradually, while the LSTM-RNN model shows that the bridge keeps great condition during the first 5 years and degrades rapidly from 5 years to 15 years. Based on the current inspection database, the LSTM-RNN model performs better than the regression model because it has smaller prediction error. With the continuous improvement of the database, the results of this study can be extended to other bridge types or other degradation factors can be introduced to improve the accuracy and usefulness of the deterioration model.

A Study on the Pavement Status and Improvement Directions of the Viewing Road in Royal Tombs of Joseon Dynasty (조선 왕릉 관람로의 포장현황과 개선방향)

  • Paek, Chong-Chul;Hong, Youn-Soon
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.66-73
    • /
    • 2019
  • The Royal Tomb of the Joseon Dynasty, which was listed as a UNESCO World Heritage site in 2009, is a cultural resource recognized for its 'outstanding universal value' around the world. The royal tomb of Joseon has been managed with an emphasis on the preservation of cultural assets since it was designated as a historical site in the 1970s, but it has received many visitors as a valuable historical and cultural resource and haven that connects the past and the present in today's bustling city. In order to investigate and analyze the current status of pavements in the royal palace in terms of quality and quantity, and to suggest the direction of improvement, this study conducted a complete survey of 53 royal palace viewing roads in 18 regions, and the results are as follows. First of all, problems are found in both the early Masato pavement of the creation, which was introduced with an emphasis on the preservation and protection of cultural assets, and the hardening pavement(KAP), which began to be used in the 1990s for the convenience of maintenance. In other words, the Masato pavement used to create a more environmentally friendly atmosphere of the Joseon royal tombs is showing a high percentage of use, but it lacks support for walking activities, such as the slippage of the pavement and water pooling during the rainy season or during the ice season. Also, hardening pavement introduced for convenience of maintenance, such as the movement of repair vehicles, is not functioning properly as it is damaged by physical deformation after construction. In addition, in awe zones such as parking lots, although the first image of the Joseon royal tombs is determined, the formation of the functional landscape centered on the carriageway does not harmonize with the traditional landscape, and, because of its lack of walking and environment-friendly features, there is a need for improvement, such as the experimental introduction of relevant pavement materials developed afterwards and continuous monitoring.

A Study on the Estimation Measure of Delay Cost on Work Zone Using the Traffic Flow Model (교통류 모형을 이용한 도로 점용공사 구간의 지체비용 산정방안)

  • Kim, Yunsik;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.120-129
    • /
    • 2016
  • The user cost is an important analysis item which should be considered together with life-cycle of facility, administrator cost and discount rate in LCCA for efficient asset management of SOC facilities. Especially, a significant delay cost occurs often for users in the road field due to a work zone for cleaning and maintenance, and in such case, the administrator should consider the administrator cost as well as the user cost for more rational decision making. However, the user cost has not been considered in most decision making steps until recently and relevant studies also have not been carried out actively. In this study, the methodology to estimate the user cost and delay cost required in the decision making step using the traffic flow model and the direct benefit estimation model in the traffic facility investment evaluation guideline is suggested. And, the traffic flow model was estimated on 4 national highway sections where maintenance was actually carried out in 2014 using VISSIM and, the user cost and the delay cost were estimated based on the suggested methodology. The analysis result showed that the average user cost of $17,569,000KRW/km{\times}day$ occurred on Section A with approximately 30,000 AADT before a work zone occurred, and in case the first lane was blocked for maintenance, the delay cost of $10,193,000KRW/km{\times}day$ (158%) on average occurred additionally. The delay cost of $1,507,000KRW/km{\times}day$ (115%) and $1,985,000KRW/km{\times}day$ (119%) occurred on Sections B and D with approximately 20,000 AADT respectively and the delay cost of $262,000KRW/km{\times}day$ (105%) occurred on Section C with approximately 10,000 AADT. This result of this study was estimated based on the simulation of traffic flow model so that there is a limitation in its actual application. A study ot develop a highly appropriate model using actual observation data and improve the possibility to apply it through the verification using the simulation will be necessary in future.

A Study on the Performance of Recycled Asphalt Pavement using Hot Recycling Plant (재생 아스팔트 포장의 공용성능 연구)

  • Kim, In-Soo;Suh, Young-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.112-118
    • /
    • 2011
  • The recycled asphalt concrete has gotten increasing attention due to the environmental issues. The volume of reclaimed asphalt has increased significantly for last few years because of city remodeling, pavement maintenance, utility excavation, and road widening. Considering the value of reclaimed asphalt, it is rather used for the recycled asphalt concrete than it is used for fill and cover up material instead of soil. This research will be a supplements incomplete issues from existing research results and suggests the quality control guideline for recycled asphalt concrete and upcoming laws. As the first step of research, the trial construction of RAP(Recycled Asphalt Pavement) performed in expressway construction sites. These trial construction sites have been checked every years. And another construction sites studied and selected for more deeper performance check of RAP. For this checks, we used automatic pavement survey equipment and computerized analysis tools. Also, DSR(Dynamic Shear Rheometer) was used for the fatigue life calculation of binder blends(RAP and virgin binder). As a consequence of this research, the application of recycled asphalt provides good enough quality for highway construction. The preceeding literatures reviewed shows that the asphalt rejuvenator are used in many countries but that type of chemical agent are not used in Korea. By using the data of trial construction and mix design in Chongwon-Sangju construction lane, the surface and base courses consisted with the 10% and 30% rap mix asphalt section maintains good performance for up to 7 years. Through the performance check and laboratory tests(DSR), the quality control and mixture's low temperature prevention are the important factor and chemical agent necessary for increasing the fatigue life of RAP binder.

  • PDF