• Title/Summary/Keyword: Road feature

Search Result 228, Processing Time 0.052 seconds

Road Damage Detection and Classification based on Multi-level Feature Pyramids

  • Yin, Junru;Qu, Jiantao;Huang, Wei;Chen, Qiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.786-799
    • /
    • 2021
  • Road damage detection is important for road maintenance. With the development of deep learning, more and more road damage detection methods have been proposed, such as Fast R-CNN, Faster R-CNN, Mask R-CNN and RetinaNet. However, because shallow and deep layers cannot be extracted at the same time, the existing methods do not perform well in detecting objects with fewer samples. In addition, these methods cannot obtain a highly accurate detecting bounding box. This paper presents a Multi-level Feature Pyramids method based on M2det. Because the feature layer has multi-scale and multi-level architecture, the feature layer containing more information and obvious features can be extracted. Moreover, an attention mechanism is used to improve the accuracy of local boundary boxes in the dataset. Experimental results show that the proposed method is better than the current state-of-the-art methods.

A Road Feature Extraction and Obstacle Localization Based on Stereo Vision (스테레오 비전 기반의 도로 특징 정보 추출 및 장애 물체 검출)

  • Lee, Chung-Hee;Lim, Young-Chul;Kwon, Soon;Lee, Jong-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.28-37
    • /
    • 2009
  • In this paper, we propose an obstacle localization method using a road feature based on a V-disparity map binarized by a maximum frequency value. In a conventional method, the detection performance is severely affected by the size, number and type of obstacles. It's especially difficult to extract a large obstacle or a continuous obstacle like a median strip. So we use a road feature as a new decision standard to localize obstacles irrespective of external environments. A road feature is proper to be a new decision standard because it keeps its rough feature very well in V-disparity under environments where many obstacles exist. And first of all, we create a binary V-disparity map using a maximum frequency value to extract a road feature easily. And then we compare the binary V-disparity map with a median value to remove noises. Finally, we use a linear interpolation for rows which have no value. Comparing this road feature with each column value in disparity map, we can localize obstacles robustly. We also propose a post-processing technique to remove noises made in obstacle localization stage. The results in real road tests show that the proposed algorithm has a better performance than a conventional method.

Long Distance Vehicle License Plate Region Detection Using Low Resolution Feature of License Plate Region in Road View Images (로드뷰 영상에서 번호판 영역의 저해상도 특징을 이용한 원거리 자동차 번호판 영역 검출)

  • Oh, Myoung-Kwan;Park, Jong-Cheon
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.239-245
    • /
    • 2017
  • For privacy protection, we propose a vehicle license plate region detection method in road view image served from portal site. Because vehicle license plate regions in road view images have different feature depending on distance, long distance vehicle license plate regions are not detected by feature of low resolution. Therefore, we suggest a method to detect short distance vehicle license plate regions by edge feature and long distance vehicle license plate regions using MSER feature. And then, we select candidate region of vehicle license plate region from detected region of each method, because the number of the vehicle license plate has a structural feature, we used it to detect the final vehicle license plate region. As the experiment result, we got a recall rate of 93%, precision rate of 75%, and F-Score rate of 80% in various road view images.

A Study on Road Detection Based on MRF in SAR Image (SAR 영상에서 MRF 기반 도로 검출에 관한 연구)

  • 김순백;김두영
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.7-12
    • /
    • 2001
  • In this paper, an estimation method of hybrid feature was proposed to detect linear feature such as the road network from SAR(synthetics aperture radar) images that include speckle noise. First we considered the mean intensity ratio or the statistical properties of locality neighboring regions to detect linear feature of road. The responses of both methods are combined to detect the entire road network. The purpose of this paper is to extract the segments of road and to mutually connect them according to the identical intensity road from the locally detected fusing images. The algorithm proposed in this paper is to define MRF(markov random field) model of the priori knowledge on the roads and applied it to energy function of interacting density points, and to detect the road networks by optimizing the energy function.

  • PDF

A Study on Localization Methods for Autonomous Vehicle based on Particle Filter Using 2D Laser Sensor Measurements and Road Features (2D 레이저센서와 도로정보를 이용한 Particle Filter 기반 자율주행 차량 위치추정기법 개발)

  • Ahn, Kyung-Jae;Lee, Taekgyu;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.803-810
    • /
    • 2016
  • This paper presents a study of localization methods based on particle filter using 2D laser sensor measurements and road feature map information, for autonomous vehicles. In order to navigate in an urban environment, an autonomous vehicle should be able to estimate the location of the ego-vehicle with reasonable accuracy. In this study, road features such as curbs and road markings are detected to construct a grid-based feature map using 2D laser range finder measurements. Then, we describe a particle filter-based method for accurate positional estimation of the autonomous vehicle in real-time. Finally, the performance of the proposed method is verified through real road driving experiments, in comparison with accurate DGPS data as a reference.

A Road Extraction Algorithm using Mean-Shift Segmentation and Connected-Component (평균이동분할과 연결요소를 이용한 도로추출 알고리즘)

  • Lee, Tae-Hee;Hwang, Bo-Hyun;Yun, Jong-Ho;Park, Byoung-Soo;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.359-364
    • /
    • 2014
  • In this paper, we propose a method for extracting a road area by using the mean-shift method and connected-component method. Mean-shift method is very effective to divide the color image by the method of non-parametric statistics to find the center mode. Generally, the feature points of road are extracted by using the information located in the middle and bottom of the road image. And it is possible to extract a road region by using this feature-point and the partitioned color image. However, if a road region is extracted with only the color information and the position information of a road image, it is possible to detect not only noise but also off-road regions. This paper proposes the method to determine the road region by eliminating the noise with the closing / opening operation of the morphology, and by extracting only the portion of the largest area using a connected-components method. The proposed method is simulated and verified by applying the captured road images.

Model-based Curved Lane Detection using Geometric Relation between Camera and Road Plane (카메라와 도로평면의 기하관계를 이용한 모델 기반 곡선 차선 검출)

  • Jang, Ho-Jin;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.130-136
    • /
    • 2015
  • In this paper, we propose a robust curved lane marking detection method. Several lane detection methods have been proposed, however most of them have considered only straight lanes. Compared to the number of straight lane detection researches, less number of curved-lane detection researches has been investigated. This paper proposes a new curved lane detection and tracking method which is robust to various illumination conditions. First, the proposed methods detect straight lanes using a robust road feature image. Using the geometric relation between a vehicle camera and the road plane, several circle models are generated, which are later projected as curved lane models on the camera images. On the top of the detected straight lanes, the curved lane models are superimposed to match with the road feature image. Then, each curve model is voted based on the distribution of road features. Finally, the curve model with highest votes is selected as the true curve model. The performance and efficiency of the proposed algorithm are shown in experimental results.

Multi-Scale Dilation Convolution Feature Fusion (MsDC-FF) Technique for CNN-Based Black Ice Detection

  • Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2023
  • In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-grained details. Experimental results demonstrate the superior performance of our proposed network model compared to conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, thereby enhancing road safety during winter conditions.

Method for Road Vanishing Point Detection Using DNN and Hog Feature (DNN과 HoG Feature를 이용한 도로 소실점 검출 방법)

  • Yoon, Dae-Eun;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A vanishing point is a point on an image to which parallel lines projected from a real space gather. A vanishing point in a road space provides important spatial information. It is possible to improve the position of an extracted lane or generate a depth map image using a vanishing point in the road space. In this paper, we propose a method of detecting vanishing points on images taken from a vehicle's point of view using Deep Neural Network (DNN) and Histogram of Oriented Gradient (HoG). The proposed algorithm is divided into a HoG feature extraction step, in which the edge direction is extracted by dividing an image into blocks, a DNN learning step, and a test step. In the learning stage, learning is performed using 2,300 road images taken from a vehicle's point of views. In the test phase, the efficiency of the proposed algorithm using the Normalized Euclidean Distance (NormDist) method is measured.

Road Extraction from High Resolution Satellite Image Using Object-based Road Model (객체기반 도로모델을 이용한 고해상도 위성영상에서의 도로 추출)

  • Byun, Young-Gi;Han, You-Kyung;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.421-433
    • /
    • 2011
  • The importance of acquisition of road information has recently been increased with a rapid growth of spatial-related services such as urban information system and location based service. This paper proposes an automatic road extraction method using object-based approach which was issued alternative of pixel-based method recently. Firstly, the spatial objects were created by MSRS(Modified Seeded Region Growing) method, and then the key road objects were extracted by using properties of objects such as their shape feature information and adjacency. The omitted road objects were also traced considering spatial correlation between extracted road and their neighboring objects. In the end, the final road region was extracted by connecting discontinuous road sections and improving road surfaces through their geometric properties. To assess the proposed method, quantitative analysis was carried out. From the experiments, the proposed method generally showed high road detection accuracy and had a great potential for the road extraction from high resolution satellite images.