• Title/Summary/Keyword: Road Vehicle

Search Result 2,500, Processing Time 0.029 seconds

Vehicle Dynamic Characteristics according to the Coherence of Road Roughness between Left and Right Wheels (좌우 바퀴 노면 거칠기 상관도가 차량 운동 특성에 미치는 영향)

  • Choi, Gyoo-Jae;Jang, Bong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.120-126
    • /
    • 2006
  • Vehicle dynamic simulation has been carried out using the coherence of road roughness between left and right wheels. The generated twin tracks with the coherence of road roughness between left and right wheels are in good agreements with the measured coherence relation of left and right wheels. And these tracks reflect well on the roughness characteristics of real roads. Using the generated roads and multibody dynamic simulation program, vehicle dynamic simulation is performed. The vertical and roll motion analysis of a vehicle are carried out using the realistic road profiles with the coherence between left and right wheels and the results are in good agreements with the dynamic characteristics of a vehicle.

System Identification of In-situ Vehicle Output Torque Measurement System (차량 출력 토크 측정 시스템의 시스템 식별)

  • Kim, Gi-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • This paper presents a study on the system identification of the in-situ output shaft torque measurement system using a non-contacting magneto-elastic torque transducer installed in a vehicle drivline. The frequency response (transfer) function (FRF) analysis is conducted to interpret the dynamic interaction between the output shaft torque and road side excitation due to the road roughness. In order to identify the frequency response function of vehicle driveline system, two power spectral density (PSD) functions of two random signals: the road roughness profile synthesized from the road roughness index equation and the stationary noise torque extracted from the original torque signal, are first estimated. System identification results show that the output torque signal can be affected by the dynamic characteristics of vehicle driveline systems, as well as the road roughness.

3-Dimensional Analysis of Magnetic Road and Vehicle Position Sensing System for Autonomous Driving (자율주행용 자계도로의 3차원 해석 및 차량위치검출시스템)

  • Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, a 3-dimensional analysis of magnetic road and a position sensing system for an autonomous vehicle system is described. Especially, a new position sensing system, end of the important component of an autonomous vehicle, is proposed. In a magnet based autonomous vehicle system, to sense the vehicle position, the sensor measures the field of magnetic road. The field depends on the sensor position of the vehicle on the magnetic road. As the rotation between the magnetic field and the sensor position is highly complex, it is difficult that the relation is stored in memory. Thus, a neural network is used to learn the mapping from th field to the position. The autonomous vehicle system with the proposed position sensing system is tested in experimental setup.

A Scheme of Extracting Forward Vehicle Area Using the Acquired Lane and Road Area Information (차선과 도로영역 정보를 이용한 전방 차량 영역의 추출 기법)

  • Yu, Jae-Hyung;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.797-807
    • /
    • 2008
  • This paper proposes a new algorithm of extracting forward vehicle areas using the acquired lanes and road area information on road images with complex background to improve the efficiency of the vehicle detection. In the first stage, lanes are detected by taking into account the connectivity among the edges which are determined from a method of chain code. Once the lanes proceeding to the same direction with the running vehicle are detected, neighborhood roadways are found from the width and vanishing point of the acquired roadway of the running vehicle. And finally, vehicle areas, where forward vehicles are located on the road area including the center and neighborhood roadways, are extracted. Therefore, the proposed scheme of extracting forward vehicle area improves the rate of vehicle detection on the road images with complex background, and is highly efficient because of detecting vehicles within the confines of the acquired vehicle area. The superiority of the proposed algorithm is verified from experiments of the vehicle detection on road images with complex background.

RESEARCH ON MODULARIZED DESIGN AND PERFORMANCE ASSESSMENT BASED ON MULTI-DRIVER OFF-ROAD VEHICLE DRIVING-LINE

  • Yi, J.J.;Yu, B.;Hu, D.Q.;Li, C.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.375-382
    • /
    • 2007
  • The multi-driver off-road vehicle drive-line consists of many components, with close connections among them. In order to design and analyze the drive-line efficiently, a modular methodology should be taken. The aim of a modular approach to the modeling of complex systems is to support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Multi-driver off-road vehicles are comparatively complicated. The driving-line is an important core part to the vehicle, it has a significant contribution to the performance. Multi-driver off-road vehicles have complex driving-lines, so performance is heavily dependent on the driving-line. A typical off-road vehicle's driving-line system consists of a torque converter, transmission, transfer case and driving-axles, which transfers the power generated by the engine and distributes it effectively to the driving wheels according to the road condition. According to its main function, this paper proposes a modularized approach for design and evaluation of the vehicle's driving-line. It can be used to effectively estimate the performance of the driving-line during the concept design stage. Through an appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-driver off-road vehicles.

Full Vehicle Model for Dynamic Analysis of a Large Vehicle with CTIS (CTIS를 장착한 대형차량의 동역학 해석 모델)

  • Song, Oh-Seop;Nam, Kyung-Mo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1144-1150
    • /
    • 2009
  • Appropriate vibration model is required to predict in advance the vibration level of a large vehicle which carries sensitive electronic/mechanical equipments and drives often on the unpaved and/or off-road conditions. Central tire inflation system(CTIS) is recently adopted to improve the mobile operation of military and bulletproof vehicles. In this paper, full vehicle model(FVM) having 11 degrees of freedom and equipped with CTIS has been developed for a large vehicle which has $8\times8$ wheels$\times$driving wheels. Usability of the developed model is validated via road tests for three different modes (i.e. highway, country, and mud/sand/snow modes) and for various velocity conditions. The developed FVM can be used to predict the vibration level of the large vehicle as well as to determine the driving velocity criterion for different road conditions.

Effects of Outlet Shape on Vehicle Behavior according to Road Friction Coefficient in Interchange (입체교차로에서 노면 마찰계수에 따른 유출부 형상이 차량거동에 미치는 영향)

  • Park, Hyeong-Seon;Lim, Jong-Han;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.213-220
    • /
    • 2016
  • In order to drive on road safely, the type of road design and construction is basically needed to optimize driver's safety and vehicle performance. Although the heavy traffic highways were built by reflecting these factors, the national highways and local roads have still taken a lot of problems. In this study, we analyzed the behavior characteristics of a vehicle according to the speed variation of the vehicle using the PC-Crash program for the traffic accidents reconfiguration at GULUN interchange located Hongcheon in Gangwon Province. the conditions outlet surface of the road for analysis were dry road surface, wet road surface and icy road surface. As a result, we identified the fact that the friction coefficient of road surface and the speed of vehicle affected to vehicle behavior characteristics of outlet shape in GULUN interchange, and showed the possibility that we can verify a problem about road design through to this simulation in advance.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

A Study for Residual Deformation and Strength Evaluation on Road Wheel of a Tracked Vehicle (궤도 차량 로드 휠 강도평가와 잔류 변형에 관한 연구)

  • Shin, Kuk-Sik;Kang, Seong-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.47-52
    • /
    • 2011
  • A tracked vehicle is dependent on performance of power pack and suspension systems. Especially, road wheels which are components of suspension system contribute distributing vehicle weight on soil and preventing from misguiding tracks. In this study, the maximum force was calculated that a tracked vehicle is driven on the worst condition. And then, FE analyses were carried out to evaluate strength road wheel under maximum force condition. In standard of quality evaluation for road wheel, FE simulations and experimental works were carried out under thirty degree slant load of normal direction of shaft. And then, A relationship residual deformation for slant load was investigated. The result of this research is applicable to evaluate strength and to make use of basis data.

Road-friendliness of Fuzzy Hybrid Control Strategy Based on Hardware-in-the-Loop Simulations

  • Yan, Tian Yi;Li, Qiang;Ren, Kun Ru;Wang, Yu Lin;Zhang, Lu Zou
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.148-154
    • /
    • 2012
  • Purpose: In order to improve road-friendliness of heavy vehicles, a fuzzy hybrid control strategy consisting of a hybrid control strategy and a fuzzy logic control module is proposed. The performance of the proposed strategy should be effectively evaluated using a hardware-in-the-loop (HIL) simulation model of a semi-active suspension system based on the fuzzy hybrid control strategy prior to real vehicle implementations. Methods: A hardware-in-the-loop (HIL) simulation system was synthesized by utilizing a self-developed electronic control unit (ECU), a PCI-1711 multi-functional data acquisition board as well as the previously developed quarter-car simulation model. Road-friendliness of a semi-active suspension system controlled by the proposed control strategy was simulated via the HIL system using Dynamic Load Coefficient (DLC) and Dynamic Load Stress Factor (DLSF) criteria. Results: Compared to a passive suspension, a semi-active suspension system based on the fuzzy hybrid control strategy reduced the DLC and DLSF values. Conclusions: The proposed control strategy of semi-active suspension systems can be employed to improve road-friendliness of road vehicles.