• Title/Summary/Keyword: Road Sign Detection

Search Result 23, Processing Time 0.022 seconds

Road Sign Recognition and Geo-content Creation Schemes for Utilizing Road Sign Information (도로표지 정보 활용을 위한 도로표지 인식 및 지오콘텐츠 생성 기법)

  • Seung, Teak-Young;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.252-263
    • /
    • 2016
  • Road sign is an important street furniture that gives some information such as road conditions, driving direction and condition for a driver. Thus, road sign is a major target of image recognition for self-driving car, ADAS(autonomous vehicle and intelligent driver assistance systems), and ITS(intelligent transport systems). In this paper, an enhanced road sign recognition system is proposed for MMS(Mobile Mapping System) using the single camera and GPS. For the proposed system, first, a road sign recognition scheme is proposed. this scheme is composed of detection and classification step. In the detection step, object candidate regions are extracted in image frames using hybrid road sign detection scheme that is based on color and shape features of road signs. And, in the classification step, the area of candidate regions and road sign template are compared. Second, a Geo-marking scheme for geo-content that is consist of road sign image and coordinate value is proposed. If the serious situation such as car accident is happened, this scheme can protect geographical information of road sign against illegal users. By experiments with test video set, in the three parts that are road sign recognition, coordinate value estimation and geo-marking, it is confirmed that proposed schemes can be used for MMS in commercial area.

An Automatic Road Sign Recognizer for an Intelligent Transport System

  • Miah, Md. Sipon;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.378-383
    • /
    • 2012
  • This paper presents the implementation of an automatic road sign recognizer for an intelligent transport system. In this system, lists of road signs are processed with actions such as line segmentation, single sign segmentation, and storing an artificial sign in the database. The process of taking the video stream and extracting the road sign and storing in the database is called the road sign recognition. This paper presents a study on recognizing traffic sign patterns using a segmentation technique for the efficiency and the speed of the system. The image is converted from one scale to another scale such as RGB to grayscale or grayscale to binary. The images are pre-processed with several image processing techniques, such as threshold techniques, Gaussian filters, Canny edge detection, and the contour technique.

Three Dimensional Tracking of Road Signs based on Stereo Vision Technique (스테레오 비전 기술을 이용한 도로 표지판의 3차원 추적)

  • Choi, Chang-Won;Choi, Sung-In;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1259-1266
    • /
    • 2014
  • Road signs provide important safety information about road and traffic conditions to drivers. Road signs include not only common traffic signs but also warning information regarding unexpected obstacles and road constructions. Therefore, accurate detection and identification of road signs is one of the most important research topics related to safe driving. In this paper, we propose a 3-D vision technique to automatically detect and track road signs in a video sequence which is acquired from a stereo vision camera mounted on a vehicle. First, color information is used to initially detect the sign candidates. Second, the SVM (Support Vector Machine) is employed to determine true signs from the candidates. Once a road sign is detected in a video frame, it is continuously tracked from the next frame until it is disappeared. The 2-D position of a detected sign in the next frame is predicted by the 3-D motion of the vehicle. Here, the 3-D vehicle motion is acquired by using the 3-D pose information of the detected sign. Finally, the predicted 2-D position is corrected by template-matching of the scaled template of the detected sign within a window area around the predicted position. Experimental results show that the proposed method can detect and track many types of road signs successfully. Tracking comparisons with two different methods are shown.

A Research of Factors Affecting LiDAR's Detection on Road Signs: Focus on Shape and Height of Road Sign (도로표지에 대한 LiDAR 검지영향요인 연구: 도로표지의 모양과 높이를 중심으로)

  • Kim, Ji yoon;Park, Bum jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.190-211
    • /
    • 2022
  • This study investigated the effect of the shape and height of road signs on detection performance when detecting road signs with LiDAR, which is recognized as an essential sensor for autonomous vehicles. For the study, four types of road signs with the same area and material and different shapes were produced, and a road driving test was performed by installing a 32Ch rotating LiDAR on the upper part of the vehicle. As a result of comparing the shape of the point cloud and the NPC according to the shape of the road sign, It is expected that a distance of less than 40m is required to recognize the overall shape of a road sign using 32Ch LiDAR, and shapes such as triangles and rectangles are more advantageous than squares in securing the maximum point cloud from a long distance. As a result of the study according to the height of the road sign, At short distances (within 20m), if the height of the sign is raised to more than 2m, it deviates from the vertical viewing angle of the LiDAR and cannot express the complete point cloud shape. However, it showed a negligible effect compared to the near-field height change. These research results are expected to be utilized in the development of road facilities dedicated to LiDAR for the commercialization of autonomous cooperative driving technology.

Automatic Recognition of Direction Information in Road Sign Image Using OpenCV (OpenCV를 이용한 도로표지 영상에서의 방향정보 자동인식)

  • Kim, Gihong;Chong, Kyusoo;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.293-300
    • /
    • 2013
  • Road signs are important infrastructures for safe and smooth traffic by providing useful information to drivers. It is necessary to establish road sign DB for managing road signs systematically. To provide such DB, manually detection and recognition from imagery can be done. However, it is time and cost consuming. In this study, we proposed algorithms for automatic recognition of direction information in road sign image. Also we developed algorithm code using OpenCV library, and applied it to road sign image. To automatically detect and recognize direction information, we developed program which is composed of various modules such as image enhancement, image binarization, arrow region extraction, interesting point extraction, and template image matching. As a result, we can confirm the possibility of automatic recognition of direction information in road sign image.

Text Area Detection of Road Sign Images based on IRBP Method (도로표지 영상에서 IRBP 기반의 문자 영역 추출)

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.6
    • /
    • pp.1-9
    • /
    • 2014
  • Recently, a study is conducting to image collection and auto detection of attribute information using mobile mapping system. The road sign attribute information detection is difficult because of various size and placement, interference of other facilities like trees. In this study, a text detection method that does not rely on a Korean character template is required to successfully detect the target text when a variety of differently sized texts are present near the target texts. To overcome this, the method of incremental right-to-left blob projection (IRBP) was suggested as a solution; the potential and improvement of the method was also assessed. To assess the performance improvement of the IRBP that was developed, the IRBP method was compared to the existing method that uses Korean templates through the 60 videos of street signs that were used. It was verified that text detection can be improved with the IRBP method.

Traffic Sign Detection Using The HSI Eigen-color model and Invariant Moments (HSI 고유칼라 모델과 불변 모멘트를 이용한 교통 표지판 검출 방법)

  • Kim, Jong-Bae;Park, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.41-51
    • /
    • 2010
  • In the research for driver assistance systems, traffic sign information to the driver must be a very important information. Therefore, the detection system of traffic signs located on the road should be able to handel real-time. To detect the traffic signs, color and shape of traffic signs is to use the information after images obtained using the CCD camera. In the road environment, however, using color information to detect traffic sings will cause many problems due to changes of weather and environmental factors. In this paper, to solve it, the candidate traffic sign regions are detected from road images obtained in a variety of the illumination changes using the HSI eign-color model. And then, using the invariant moment-based SVM classifier to detect traffic signs are proposed. Experimental results show that, traffic sign detection rate is 91%, and the processing time per frame is 0.38sec. Proposed method is useful for real-time intelligent traffic guidance systems can be applied.

Efficient Methods for Road Sign Database Construction (도로표지의 효율적인 데이터베이스 구축방안)

  • Kim, Eui-Myoung;Cho, Du-Young;Chong, Kyu-Soo;Kim, Seong-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.91-98
    • /
    • 2011
  • Road signs are part of the traffic facilities intended to guide drivers to their destinations in a safe and comfortable manner. Due to the creation of new routes, changes to the old routes, and the deterioration of road signs, road signs do require efforts to do ongoing field investigations and put the results in a database. The purpose of this study was to propose methodologies to do field investigations and build a database for road signs efficiently. For that purpose, a mobile mapping system was designed for field investigations. The designed mobile mapping system was comprised of three cameras to produce image information about road signs, GPS/IMU/DMI to obtain information about the position and attitude of a vehicle, and a laser scanner to generate information about the locations of road signs and routes. Also proposed in the study was a procedure to automatically detect the areas of road signs in the road signs images and recognize their characters.

An Illumination Invariant Traffic Sign Recognition in the Driving Environment for Intelligence Vehicles (지능형 자동차를 위한 조명 변화에 강인한 도로표지판 검출 및 인식)

  • Lee, Taewoo;Lim, Kwangyong;Bae, Guntae;Byun, Hyeran;Choi, Yeongwoo
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.203-212
    • /
    • 2015
  • This paper proposes a traffic sign recognition method in real road environments. The video stream in driving environments has two different characteristics compared to a general object video stream. First, the number of traffic sign types is limited and their shapes are mostly simple. Second, the camera cannot take clear pictures in the road scenes since there are many illumination changes and weather conditions are continuously changing. In this paper, we improve a modified census transform(MCT) to extract features effectively from the road scenes that have many illumination changes. The extracted features are collected by histograms and are transformed by the dense descriptors into very high dimensional vectors. Then, the high dimensional descriptors are encoded into a low dimensional feature vector by Fisher-vector coding and Gaussian Mixture Model. The proposed method shows illumination invariant detection and recognition, and the performance is sufficient to detect and recognize traffic signs in real-time with high accuracy.

Real-Time Road Sign Detection Using Vertical Plane and Adaboost (수직면과 아다부스트를 사용한 실시간 교통 표지판 검출)

  • Yoon, Chang-Yong;Jang, Suk-Yoon;Park, Mig-Non
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.29-37
    • /
    • 2009
  • This paper describes a vision-based and real-time system for detecting road signs from within a moving vehicle. The proposed system has the standard architecture with adaboost algorithm to detect road signs in real time. And it uses the value of vortical plane in the process of extracting candidate areas in view of fact that there are vertically most of signs on roads. Although being useful for detecting objects in real time, the conventional adaboost algorithm deteriorates the performance of detection rate in complex circumstance by reason of using only integral images as features. To overcome this problem, this paper proposes the method that improves the reliability of candidates as using the value of vertical plane for extracting candidate area and improves the performance of the detection rate as using integral images to which we add the kind of feature prototype. The experiments of this paper show that the detection rate of the proposed method has higher than that of the conventional adaboost algorithm under the real complex circumstance of roads.