• Title/Summary/Keyword: Road Sensor Data

Search Result 142, Processing Time 0.027 seconds

Assessment of Freeway Crash Risk using Probe Vehicle Accelerometer (프로브차량 가속도센서를 이용한 고속도로 교통사고 위험도 평가기법)

  • Park, Jae-Hong;Oh, Cheol;Kang, Kyeong-Pyo
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • Understanding various casual factors affecting the occurrence of freeway traffic crash is a backbone of deriving effective countermeasures. The first step toward understanding such factors is to identify crash risks on freeways. Unlike existing studies, this study focused on the unsafe vehicle maneuvering that can be detected by in-vehicle sensors. The recent advancement of sensor technologies allows us to gather and analyze detailed microscopic events leading to crash occurrence such as the abrupt change in acceleration. This study used an accelerometer to capture the unsafe events. A set of candidate variables representing unsafe events were derived from analyzing acceleration data obtained by the accelerometer. Then, the crash risk was modeled by the binary logistic regression technique. The probabilistic outcome of crash risk can be provided by the proposed model. An application of the methodology assessing crash risk was presented, and further research items for the successful field implementation were also discussed.

Study on the Remote Controllability of Vision Based Unmanned Vehicle Using Virtual Unmanned Vehicle Driving Simulator (가상 무인 차량 시뮬레이터를 이용한 영상 기반 무인 차량의 원격 조종성 연구)

  • Kim, Sunwoo;Han, Jong-Boo;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.525-530
    • /
    • 2016
  • In this paper, we proposed an image shaking index to evaluate the remote controllability of vision based unmanned vehicles. To analyze the usefulness of the proposed image-shaking index, we perform subjective tests using a virtual unmanned vehicle driving simulator. The developed driving simulator consists of a real-time multibody dynamic software of the unmanned vehicle, a motion simulator, and a driver console. We perform dynamic simulations to obtain the motion of the unmanned vehicle running on the various road surfaces such as ISO roughness level A~E roads. The motion of the vehicle body is reflected in the motion simulator. Then, to enable remote control operation, we offer to operators the image data that was measured using the camera sensor on the simulator. We verify the usefulness of the proposed image-shaking index compared with subjective index provided by operators.

The Evaluation of on Land Cover Classification using Hyperspectral Imagery (초분광 영상을 이용한 토지피복 분류 평가)

  • Lee, Geun-Sang;Lee, Kang-Cheol;Go, Sin-Young;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.103-112
    • /
    • 2014
  • The objective of this study is to suggest the possibility on land cover classification using hyperspectal imagery on area which includes lands and waters. After atmospheric correction as a preprocessing work was conducted on hyperspectral imagery acquired by airborne hyperspectral sensor CASI-1500, the effect of atmospheric correction to a few land cover class in before and after atmospheric correction was compared and analyzed. As the result of accuracy of land cover classification by highspectral imagery using reference data as airphoto and digital topographic map, maximum likelihood method represented overall accuracy as 67.0% and minimum distance method showed overall accuracy as 52.4%. Also product accuracy of land cover classification on road, dry field and green house, but that on river, forest, grassland showed low because the area of those was composed of complex object. Therefore, the study needs to select optimal band to classify specific object and to construct spectral library considering spectral characteristics of specific object.

Analysis of Traversable Candidate Region for Unmanned Ground Vehicle Using 3D LIDAR Reflectivity (3D LIDAR 반사율을 이용한 무인지상차량의 주행가능 후보 영역 분석)

  • Kim, Jun;Ahn, Seongyong;Min, Jihong;Bae, Keunsung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1047-1053
    • /
    • 2017
  • The range data acquired by 2D/3D LIDAR, a core sensor for autonomous navigation of an unmanned ground vehicle, is effectively used for ground modeling and obstacle detection. Within the ambiguous boundary of a road environment, however, LIDAR does not provide enough information to analyze the traversable region. This paper presents a new method to analyze a candidate area using the characteristics of LIDAR reflectivity for better detection of a traversable region. We detected a candidate traversable area through the front zone of the vehicle using the learning process of LIDAR reflectivity, after calibration of the reflectivity of each channel. We validated the proposed method of a candidate traversable region detection by performing experiments in the real operating environment of the unmanned ground vehicle.

Study on Automated Error Detection Method for Enhancing High Definition Map (정밀도로지도 레이어의 품질향상을 위한 자동오류 판독 연구)

  • Hong, Song Pyo;Oh, Jong Min;Song, Yong Hyun;Shin, Young Min;Sung, Dong Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.391-399
    • /
    • 2020
  • Autonomous driving can be limited by only using sensors if the sensor is blocked by sudden changes in surrounding environments or large features such as heavy vehicles. In order to overcome the limitations, the precise road-map has been used additionally. In korea, the NGII (National Geographic Information Institute) produces and supplies high definition map for autonomous vehicles. Accordingly, in this study, errors occurring in the process of e data editing and dtructured esditing of high definition map are systematically typed providing by the National Geographic Information Institute. In addition, by presenting the error search process and solution for each situation, we conducted a study to quickly correct errors in high definition map, and largely classify the error items for shape integrity, spatial relationship, and reference relationship, and examine them in detail. The method was derived.

Analysis of the Driving & Loading Pattern of the Construction Waste Collecting Trucks Using IoT On-Board Truck Scale System (IoT 자중계 시스템을 활용한 건설폐기물 수집·운반 차량의 운행 및 적재패턴 분석)

  • Kim, Jong Woo;Jung, Young Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.74-87
    • /
    • 2020
  • Overloaded trucks are the main source that threatens road safety and directly affects the reduction of pavement life. The On-board truck scale is the only equipment that could prevent overloading by measuring and adjusting the loading weight before driving. Legislation is needed to encourage its installation so that the driver can prevent overloading. In this study, an on-board truck scale system was installed on 30 dump trucks for transporting construction waste, such as soil and aggregates, which are major loads of 36.55% for overloading, and the trucks were monitored remotely. The overload prevention effect was analyzed by comparing driving data for 1 month before distribution of the weight display app that can recognize the weight to the driver and 1 month after distribution. After installation, overloading could be 6.1% reduced, and the transportation efficiency could be increased by checking the weight provided from the On-board truck scale system.

Study of the Behavior of Concrete Slab Track on Earthwork According to the Variation of Train Axle Load and Speed (열차하중, 속도변화에 따른 토공상 콘크리트 슬래브궤도의 거동특성연구)

  • Chun, Hee-Kwang;Kang, Yun-Suk;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6788-6798
    • /
    • 2015
  • In recent high speed rail way, the operating speed of train is enhanced and the introduction of EMU train vehicles is increased. In addition, as expected the demand of the concrete slab track and the trend of design cross-section reduction, the clear behavior of evaluation of internal slab layer is demanded about the variation of design load and speed. The purpose of this study is to evaluate and identify the mechanical behavior pattern of concrete slab track and track-road bed with the variation of axle load and train speed. To this end, the behavior of TCL and HSB was evaluated in according to the variation of axle load and speed. And the analysis results and the data measured TCL strain sensor, which was embedded in TCL slab under installation on Honam high speed railway, was analyzed. The analysis result shows that the strain are increasing in according to the speed-up of train, and line regression was obtained from measured data. Analysis data of the state of bonding condition of slab layer and measured data was analyzed. It is conducted that the TCL layer stress of HEMU 430X, which of axle load, is lighter was similar to the stress of KTX-Honam, the standard deviation of measured stress is dramatically increased.

Pilot Investigation on Moisture Variation Aspects in Pavement Materials Based on Relative Humidity Measurements (도로포장 재료의 상대습도 측정에 의한 수분변화 특성 분석 기초 연구)

  • Kim, Seong-Min;Park, Hee-Beam;Cho, Byoung-Hooi
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.87-99
    • /
    • 2006
  • This study was conducted to investigate whether the moisture variation aspects in pavement materials can be analyzed based on the convenient and reliable relative humidity(RH) measurement techniques. First, the ambient RH was measured using various sensors and the accuracies and calibration methods of the sensors were examined. Then, the RH of a cement mortar specimen was measured using the reliable sensors and the data was analyzed. In addition, the feasibility of using the RH measurement sensors to analyze the permeability of pavement materials was investigated. From this study, it was found that the Hygrochron was the most appropriate sensor to measure the RH of pavement materials, and the proper installation and calibration methods were developed. The RH of the cement mortar specimen tended to approach the ambient RH and was not much affected by the variation of the ambient RH. The specimen's RH variations at the surface and at the center showed a clear time lag. The RH measurement sensor was also found to be an appropriate tool for water permeability tests, and the methodologies to evaluate the permeability of pavement materials were proposed.

  • PDF

3-D Analysis of Slope by Tension Wire Sensing (Tension Wire 계측을 통한 비탈면의 3차원 거동 분석)

  • Shin, Taeju;Kim, Taesoo;Hwang, Sanggoo;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2015
  • Several sensor systems are used to estimate and predict the slope behaviors, however though slope sensing systems are much up-to-dated compared to before, they are mainly focused on the hardware developing. It means the analyzing software is deficient to apply the examining slope behavior for slope stability. In real case, slope behavior shows the 3-dimensional movement and failure; however the modeling methods for 3-D behavior are more difficult and need more variables. 1-D analysis shows only the length variation, however the real slope makes the 3-D behaviors. To fix the 3-D space coordinate, three values should be determined such as length, horizontal angle and vertical angle. Therefore if the 3-D coordinate system were composed by the points considered of two directions and length, the 3-D space could be separated into horizontal plane and vertical plane. The data from DY-slope in Chungbuk province was analyzed to the developed 3-D coordinate system. It is concluded from the results of 3-D analysis, the slope is generally moving to transverse direction, also the displacements are happening to road and vertical direction at the same time. Presently, the accumulated displacement between sensing points shows small value within 4.3 cm, and the displacements of all sensing points show the similar directions and magnitudes.

Developing algorithms for providing evacuation and detour route guidance under emergency conditions (재난.재해 시 대피 및 우회차량 경로 제공 알고리즘 개발)

  • Yang, Choong-Heon;Son, Young-Tae;Yang, In-Chul;Kim, Hyun-Myoung
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.129-139
    • /
    • 2009
  • The transportation network is a critical infrastructure in the event of natural and human caused disasters such as rainfall, snowfall, and terror and so on. Particularly, the transportation network in an urban area where a large number of population live is subject to be negatively affected from such events. Therefore, efficient traffic operation plans are required to assist rapid evacuation and effective detour of vehicles on the network as soon as possible. Recently, ubiquitous communication and sensor network technology is very useful to improve data collection and connection related emergency information. In this study, we develop a specific algorithm to provide evacuation route and detour information only for vehicles under emergency situations. Our algorithm is based on shortest path search technique and dynamic traffic assignment. We perform the case study to evaluate model performance applying hypothetical scenarios involved terror. Results show that the model successfully describe effective path for each vehicle under emergency situation.

  • PDF