• Title/Summary/Keyword: Road Section

Search Result 638, Processing Time 0.035 seconds

Derivation of Driving Stability Indicators for Autonomous Vehicles Based on Analyzing Waymo Open Dataset (Waymo Open Dataset 기반 자율차의 주행행태분석을 통한 주행안정성 평가지표 도출)

  • Hoyoon Lee;Jeonghoon Jee;Cheol Oh;Hoseon Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.94-109
    • /
    • 2024
  • As autonomous vehicles are allowed to drive on public roads, there is an increasing amount of on-road data available for research. It has therefore become possible to analyze impacts of autonomous vehicles on traffic safety using real-world data. It is necessary to use indicators that are well-representative of the driving behavior of autonomous vehicles to understand the implications of them on traffic safety. This study aims to derive indicators that effectively reflect the driving stability of autonomous vehicles by analyzing the driving behavior using the Waymo Open Dataset. Principal component analysis was adopted to derive indicators with high explanatory capability for the dataset. Driving stability indicators were separated into longitudinal and lateral ones. The road segments on the dataset were divided into four based on the characteristics of each, which were signalized and unsignalized intersections, tangent road section, and curved road section. The longitudinal driving stability was 35.48% higher in the curved road sections compared to the unsignalized intersections. With regard to the lateral driving stability, the driving stability was 76.08% higher in the signalized intersections than in the unsignalized intersections. The comparison between curved and tangent road segments showed that tangent roads are 146.87% higher regarding lateral driving stability. The results of this study are valuable for the further research to analyze the impact of autonomous vehicles on traffic safety using real-world data.

Prioritization of ASEAN Highway Development Using ANalytic Hierarchy Process (AHP 분석기법을 활용한 ASEAN 도로망 투자우선순위 분석)

  • Han, Sang-Jin;Park, Jun-Seok;Jeong, Yu-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.55-66
    • /
    • 2005
  • Association of South East Asian Nations(ASEAN) has recently decided to develop ASEAN Highway Network to connect member countries by road in an attempt to achieve a goal of closer economic integration in the region. This entailed the necessity to newly construct or upgrade some 5,481 km of road sections to make ASEAN Highway Network functional. This study offers haw we can prioritize development of these road sections using the Analytic Hierarchy Process. Particularly, it shows how individual road sections can be prioritized considering the importance of corridor or road group where the individual road section lies. It also develops how values of different evaluation criteria can be compared in the same scale. This new approach can be useful in prioritizing highway development in such cases where candidate road sections are widely scattered around the region, so detailed benefit and cost analysis is practically too demanding to carry out.

Evaluation of Surface Damage Possibility on Strip Roads (작업로 노면의 피해가능성 평가에 관한 연구)

  • Ji, Byoung-Yun;Jung, Do-Hyun;Oh, Jae-Heun;Cha, Du-Song
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.6
    • /
    • pp.656-660
    • /
    • 2008
  • This study is carried out to minimize the damage to the forest road when locating strip roads in the future for stability of timberland after afforestation by assessing the factors that affect the damage on the forest road surface and making appropriate constructing standards. Major factors that influence damage to the strip road surface were location, longitudinal gradients, soil types, cross-section shape in order of influence on damage. it is considered that structural road factors like longitudinal gradients, road width, location factors such as construction location, slope gradients and road material like soil types were greatly related to occurrence of road surface damage. Damage occurrences in the forest road were severe at the valley, longitudinal gradients of over 24%, weathered granite soil, concave of road position, road width of over 3.0 m. stability was high at longitudinal gradients of 4~24%, road width of under 3.0 m, ridge of road position, straight slope, soil materials. The evaluation table of damage possibility on forest road was manufactured by discriminant analysis using Quantification theory(II). The results showed that the discriminant ratios was 79.4% and this table was available for forest manager.

Noise Reducation of Concrete Pavement through Application of Random Transverse Tining (콘크리트 포장의 소음 저감을 위한 임의 간격 타이닝 설계 및 적용)

  • Park, Jin-Whoy;Choi, Tae-Hui;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.125-140
    • /
    • 2005
  • This study suggests a suitable random transverse tining for reduction tire/road noise from concrete pavement. Through literature reviews, random transverse tining that can disperse the energy concentrated to the specific frequency was suggested using the LCG(linear congruential generators) algorithm. The spacing of tining from this study is applied to Daegu-Pohang express highway. For the purpose oi comparison, two other random tining sections were included that are research products from Chung-Ang university and Wisconsin DOT. In result of pass-by noise measurement by car, though designed section is superior to the others as noise reduction by reducing pitch noise, the effectiveness is not large. In case of traffic noise measurement, lower noise was observed at random transverse tining sections than uniformly transverse tining section, too. But there are seine differences between pass-by noise and traffic noise.

  • PDF

A Framework for Calculating the Spatiotemporal Activation Section of LDM-Based Autonomous Driving Information (동적지도정보 기반 자율주행 정보의 시공간적 활성화 구간 산정 프레임워크)

  • Kang, Chanmo;Chung, Younshik;Park, Jaehyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.519-526
    • /
    • 2022
  • Basically, autonomous vehicles drive using road and traffic information collected by various sensors. However, it is known that there is a limitation to realizing fully autonomous driving with only such technologies and information. In recent, various efforts are being made to overcome the limitations of sensor-based autonomous driving, and efforts are also underway to utilize more specific and accurate road and traffic information, called local dynamic map (LDM). However, LDM-related data standards and specifications have not yet been sufficiently verified, and research on the spatiotemporal scope of LDM during autonomous driving is extremely limited. Based on this background, the purpose of this study is to identify these limitations through an analysis of previous LDM-related studies and to present a framework for calculating the spatiotemporal activation section of LDM-based road and traffic information.

Development of a Junction between Airport Concrete and Asphalt Pavements (공항 콘크리트와 아스팔트 포장 간의 접속 방법 개발)

  • Park, Hae Won;Kim, Dong Hyuk;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.15-20
    • /
    • 2018
  • PURPOSES : The purpose of this study is to analyze the magnitude of shoving of asphalt pavement by junction type between airport concrete and asphalt pavements, and to suggest a junction type to reduce shoving. METHODS : The actual pavement junction of a domestic airport, which is called airport "A" was modified by placing the bottom of the buried slab on the top surface of the subbase. A finite element model was developed that simulated three junction types: a standard section of junction proposed by the FAA (Federal Aviation Administration), an actual section of junction from airport "A" and a modified section of junction from airport "A". The vertical displacement of the asphalt surface caused by the horizontal displacement of the concrete pavement was investigated in the three types of junction. RESULTS : A vertical displacement of approximately 13 mm occurred for the FAA standard section under horizontal pushing of 100 mm, and a vertical displacement of approximately 55 mm occurred for the actual section of airport "A" under the same level of pushing. On the other hand, for the modified section from airport "A" a vertical displacement of approximately 17 mm occurred under the same level of pushing, which is slightly larger than the vertical displacement of the FAA standard section. CONCLUSIONS : It was confirmed that shoving of the asphalt pavement at the junction could be reduced by placing the bottom of the buried slab on the top surface of the subbase. It was also determined that the junction type suggested in this study was more advantageous than the FAA standard section because it resists faulting by the buried slab that is connected to the concrete pavement. Faulting of the junctions caused by aircraft loading will be compared by performing finite element analysis in the following study.

Varied Flow Analysis for Linear Drainage Channels (선형 배수로에 대한 부등류 해석)

  • Ku, Hye-Jin;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.773-784
    • /
    • 2008
  • The present study was carried out to examine flow properties in linear drainage channels such as road surface drainage facilities. The finite difference formulation for the varied flow analysis was solved for flow profiles in the channels. Starting the first step at the control section, the Newton-Raphson method was applied for producing numerical solutions of the equation. We considered two types of linear drainage channels, a channel with one outlet at downstream end and a channel with two outlets at both ends. Moreover, the flow analysis for various channel slopes was performed. However, we considered channels with the two outlets of slopes satisfying the condition that the both ends are the control section. The maximum of those slopes was decided from the relation between the channel slope and the location of control section. The flow of a channel with one outlet was calculated upward and downward from the control section existing in channel or upward from the control section at downstream end. The flow of a channel with two outlets at both ends were calculated for upstream and downstream channel segments divided by the water dividend, respectively and the flow analysis was completed when the water depth at the water dividend calculated from upstream end was equal to that calculated from downstream end. If the slope was larger than the critical slope, the channel with two outlets was likely to behave like the channel with one outlet. The maximum water depth was investigated and compared with that calculated additionally from the uniform flow analysis. The uniform flow analysis was likely to lead a excessive design of a drainage channel with mild slope.

Analysis on Entry and Exit Behaviors at the Weaving Section of a Continuous Auxiliary Lane: Focused on Clover-shaped Interchanges (연속 부가차로 엇갈림 구간 진출입 행태분석에 관한 연구: 클로버형 입체교차로를 중심으로)

  • Park, Je-Jin;Ha, Tae-Jun;Oh, Jae-Chul;Choi, Heung-Seob
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.79-89
    • /
    • 2017
  • Current intersection with collectors allow entry and exit in the relevant sections just as defined by the pertinent design criteria without considering driving behavior of the vehicles coming in and out of the intersection. This study analyzed the roads in the weaving sections to review driving behavior. As a result, vehicles entering a main line are found to try to change a driving lane at a section 50~55m away from a nose part, while those entering a ramp from a main line try to change it at 35~40m from a nose part. Accordingly vehicles exiting to a connecting road from a main line were found to take prior action to change a lane earlier than those entering a main line. Conflict took place intensively at 35~40m section from the nose part entering a main line. Consequently, such conflict at an weaving section may be controlled by adjusting the length of driving lane making use of a double line (solid and dotted line) that can control changing a lane. Outcome of this study may be used as a basic data for operating and maintaining an weaving section of a intersection of a road and improving traffic safety.

A Study on DEM-based Automatic Calculation of Earthwork Volume for BIM Application

  • Cho, Sun Il;Lim, Jae Hyoung;Lim, Soo Bong;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • Recently the importance of BIM (Building Information Modeling) that enables 3D location-based design and construction work is being highlighted around the world. In Korea, the road map has been established to settle the design based on BIM using drone survey results by 2025. As the first step, BIM would be applied to road construction projects worth more than 50 billion Korean Won from 2020. On the other hand, drone survey regulation has been enacted and the data for drone survey cost were also included on Standard of construction estimate in 2020. However, more careful improvement is required to reflect drone survey results in BIM design and construction. Currently, Engineering instructions and Standard of construction estimate specifies that earthwork volume must be calculated by cross section method only. So it is required to add the method of DEM (Digital Elevation Model) based volume calculation on these regulations to realize BIM application. In order for that, this study verified the method of DEM based earthwork volume calculation. To get an accurate DEM for accurate volume computation, drone survey was carried out according to the drone survey regulation and then could get an accurate DEM data which have errors less than 3cm in X, Y and 6.8cm in H. As each DEM cell has 3D coordinate component, the volume of each cell can be calculated by obtaining the height of area of the cell then total volume is calculated by multiplying total number of cells by volume of each cell for the construction area. Verification for the new calculation method compare with existing method was carried out. The difference between DEM based volume by drone survey and cross section based volume by traditional survey was less than 1.33% and it can be seen that new DEM method will be able to be applied to BIM design and construction instead of cross section method.

Estimation Desirable Safety Speed based on Driving Condition on Rural Highways (도로환경특성을 고려한 안전속도 산정에 관한 연구)

  • Kim, Keun-Hyuk;Lim, Joon-Beom;Lee, Soo-Beom;Kang, Dong-Soo;Hong, Ji-Yeon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.149-162
    • /
    • 2012
  • PURPOSES : The causes of traffic accidents can be classified into the factors of highway users, vehicles, and driving environments. Traffic accidents result from the deficiency in single or combination of these three factors. The objective of this study is to define the "potentially hazardous sections of highway" in terms of traffic safety considering these three factors. METHODS : The test drivers performed repeated driving on these highway sections. The drivers and passengers recorded the sections on which the driving was uncomfortable, and the speeds on the sections excluding the uncomfortable sections were used for the development of the model. RESULTS : The model is composed of three sub-models for each of the horizontal curve, tangent, and the section where the curve starts/ends. The safe driving behavior coefficients by the horizontal curvature were derived by comparing the maximum operating speeds at which the vehicle may slide or deviate and the speeds at which the drivers feel comfort. The safety speeds on tangent were derived by the length of tangent section considering the driver's desired speeds under the traffic condition on which the drivers hardly influenced by the other vehicles. For the sections where the curve starts/ends, the driving behaviors were classified by the distances between the curves, and the safe acceleration/deceleration speeds were derived on which the drivers enter/exit the curve sections safely. CONCLUSIONS : Safety speed could then be regarded that the model suggested in this study may be useful to define the potentially hazardous highway section and contribute the improvement of highway safety.