Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.
In this paper, we describe the reorientation method of distorted road sign by using projection transformation for improving recognition rate of road sign. RSR (Road Sign Recognition) is one of the most important topics for implementing driver assistance in intelligent transportation systems using pattern recognition and vision technology. The RS (Road Sign) includes direction of road or place name, and intersection for obtaining the road information. We acquire input images from mounted camera on vehicle. However, the road signs are often appeared with rotation, skew, and distortion by perspective camera. In order to obtain the correct road sign overcoming these problems, projection transformation is used to transform from 4 points of image coordinate to 4 points of world coordinate. The 4 vertices points are obtained using the trajectory as the distance from the mass center to the boundary of the object. Then, the candidate areas of road sign are transformed from distorted image by using homography transformation matrix. Internal information of reoriented road signs is segmented with arrow and the corresponding indicated place name. Arrow area is the largest labeled one. Also, the number of group of place names equals to that of arrow heads. Characters of the road sign are segmented by using vertical and horizontal histograms, and each character is recognized by using SAD (Sum of Absolute Difference). From the experiments, the proposed method has shown the higher recognition results than the image without reorientation.
PURPOSES: This study is to develop a road traffic sign recognition and automatic positioning for road facility management. METHODS: In this study, we installed the GPS, IMU, DMI, camera, laser sensor on the van and surveyed the car position, fore-sight image, point cloud of traffic signs. To insert automatic position of traffic sign, the automatic traffic sign recognition S/W developed and it can log the traffic sign type and approximate position, this study suggests a methodology to transform the laser point-cloud to the map coordinate system with the 3D axis rotation algorithm. RESULTS: Result show that on a clear day, traffic sign recognition ratio is 92.98%, and on cloudy day recognition ratio is 80.58%. To insert exact traffic sign position. This study examined the point difference with the road surveying results. The result RMSE is 0.227m and average is 1.51m which is the GPS positioning error. Including these error we can insert the traffic sign position within 1.51m CONCLUSIONS: As a result of this study, we can automatically survey the traffic sign type, position data of the traffic sign position error and analysis the road safety, speed limit consistency, which can be used in traffic sign DB.
이미지 인식은 패턴인식의 중요한 한 연구 분야이다. 본 논문은 이미지 세그멘테이션 알고리즘을 소개하고, 이의 응용으로 도로 Sign 인식시스템에 적용하여 그 결과를 고찰하였다. 본 논문에서, 우리는 이미지 프로세싱 기술의 도움으로 도로 Sign 의 체계적인 연구를 하였고, 이에 해당하는 알고리즘을 만들었다. 도로 Sign을 인식하기 위하여, 본 논문은 이미지 세그멘테이션 알고리즘 파트와 이미지 인식파트의 두 부분으로 나누어서 기술하였다. 인식실험은 도로 Sign 인식 알고리즘 모델이 스마트 폰에 유용하게 사용될 것과, 그 외 여러분야에 사용될 수 있음을 보여 준다.
This paper proposes a new method for the recognition of road surface marks and numbers. The proposed method designates a region of interest on the road surface without first detecting a lane. The road surface markings are extracted by location and size using a connection component analysis. Distortion due to the perspective effect is minimized by normalizing the size of the road markings. The road surface marking of the connected component is recognized by matching it with the stored road marking templates. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the recognition of road surface marks and numbers.
Road sign is an important street furniture that gives some information such as road conditions, driving direction and condition for a driver. Thus, road sign is a major target of image recognition for self-driving car, ADAS(autonomous vehicle and intelligent driver assistance systems), and ITS(intelligent transport systems). In this paper, an enhanced road sign recognition system is proposed for MMS(Mobile Mapping System) using the single camera and GPS. For the proposed system, first, a road sign recognition scheme is proposed. this scheme is composed of detection and classification step. In the detection step, object candidate regions are extracted in image frames using hybrid road sign detection scheme that is based on color and shape features of road signs. And, in the classification step, the area of candidate regions and road sign template are compared. Second, a Geo-marking scheme for geo-content that is consist of road sign image and coordinate value is proposed. If the serious situation such as car accident is happened, this scheme can protect geographical information of road sign against illegal users. By experiments with test video set, in the three parts that are road sign recognition, coordinate value estimation and geo-marking, it is confirmed that proposed schemes can be used for MMS in commercial area.
In this paper, we presents the algorithm which is to recognize the traffic sign on the road the traffic signal in a video image for autonomous navigation. First, the rocognition of traffic sign on the road can be detected using boundary point estimation form some scan-lines within the lane deducted. For this algorithm, index matrix method is used to detemine what sign is. Then, the traffic signal recognition is performed by usign the window minified by several scan-lines which position may be expected. For this algoritm, line profile concept is adopted.
도로표지는 도로 이용자를 위한 시설물로서 관리 및 유지보수의 편의성 증진을 위해 국토교통부에서는 관리시스템을 구축하여 운영 중에 있다. 향후 자율주행 시대에 도로표지의 역할은 감소하겠지만 그 필요성은 지속되고 있다. 이에 도로표지에 표기된 안내지명의 정확한 기계적 판독을 위해 도로표지 자동인식 장비를 개발하여 영상 기반의 문자 인식 기술을 적용하고 있지만 불규칙적인 규격과 수작업 제조, 조도, 빛반사, 강우 등 외부환경에 의해 오인식되는 경우가 다수 발생하고 있다. 본 연구에서는 영상 분석 등으로 극복할 수 없는 오인식 결과를 개선하기 위해 위치기반의 안내지명 후보를 도출하여 기준으로 하고, 오인식된 지명의 음소 분리를 통한 레벤슈타인 문자 유사도 검증 방법을 이용해 도로표지 안내지명 자동인식율을 개선하고자 하였다.
This paper proposes a gradation image processing method for the development of a Road Sign Recognition Platform (RReP), which aims to facilitate the rapid and accurate management and surveying of approximately 160,000 road signs installed along the highways, national roadways, and local roads in the cities, districts (gun), and provinces (do) of Korea. RReP is based on GPS(Global Positioning System), IMU(Inertial Measurement Unit), INS(Inertial Navigation System), DMI(Distance Measurement Instrument), and lasers, and uses an imagery information collection/classification module to allow the automatic recognition of signs, the collection of shapes, pole locations, and sign-type data, and the creation of road sign registers, by extracting basic data related to the shape and sign content, and automated database design. Image division and merging, which were applied in this study, produce superior results compared with local binarization method in terms of speed. At the results, larger texts area were found in images, the accuracy of text recognition was improved when images had been gradated. Multi-threshold values of natural scene images are used to improve the extraction rate of texts and figures based on pattern recognition.
According as the drivers increase who have their cars, the comprehensive studies on the automobile for the traffic safety have been raised as the important problems. Visual Recognition System for radio-controled driving is a part of the sensor processor of Unmanned Autonomous Vehicle System. When a driver drives his car on an unknown highway or general road, it produces a model from the successively inputted road traffic information. The suggested Recognition System of the Road Traffic Safety Information Board is to recognize and distinguish automatically a Road Traffic Safety Information Board as one of road traffic information. The whole processes of Recognition System of the Road Traffic Safety Information Board suggested in this study are as follows. We took the photographs of Road Traffic Safety Information Board with a digital camera in order to get an image and normalize bitmap image file with a size of $200{\times}200$ byte with Photo Shop 5.0. The existing True Color is made up the color data of sixteen million kinds. We changed it with 256 Color, because it has large capacity, and spend much time on calculating. We have practiced works of 30 times with erosion and dilation algorithm to remove unnecessary images. We drawing out original image with the Region Splitting Technique as a kind of segmentation. We made three kinds of grouping(Attention Information Board, Prohibit Information Board, and Introduction Information Board) by RYB( Red, Yellow, Blue) color segmentation. We minimized the image size of board, direction, and the influence of rounding. We also minimized the Influence according to position. and the brightness of light and darkness with Eigen Vector and Eigen Value. The data sampling this feature value appeared after building the learning Code Book Database. The suggested Recognition System of the Road Traffic Safety Information Board firstly distinguished three kinds of groups in the database of learning Code Book, and suggested in order to recognize after comparing and judging the board want to recognize within the same group with Nearest Neighborhood Decision Making.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.