• 제목/요약/키워드: Road Recognition

검색결과 308건 처리시간 0.023초

Smart Phone Road Signs Recognition Model Using Image Segmentation Algorithm

  • Huang, Ying;Song, Jeong-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.887-890
    • /
    • 2012
  • Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.

  • PDF

도로표지판 인식을 위한 사영 변환을 이용한 왜곡된 표지판의 기하교정 (Geometrical Reorientation of Distorted Road Sign using Projection Transformation for Road Sign Recognition)

  • 임희철;코식뎁;조강현
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1088-1095
    • /
    • 2009
  • In this paper, we describe the reorientation method of distorted road sign by using projection transformation for improving recognition rate of road sign. RSR (Road Sign Recognition) is one of the most important topics for implementing driver assistance in intelligent transportation systems using pattern recognition and vision technology. The RS (Road Sign) includes direction of road or place name, and intersection for obtaining the road information. We acquire input images from mounted camera on vehicle. However, the road signs are often appeared with rotation, skew, and distortion by perspective camera. In order to obtain the correct road sign overcoming these problems, projection transformation is used to transform from 4 points of image coordinate to 4 points of world coordinate. The 4 vertices points are obtained using the trajectory as the distance from the mass center to the boundary of the object. Then, the candidate areas of road sign are transformed from distorted image by using homography transformation matrix. Internal information of reoriented road signs is segmented with arrow and the corresponding indicated place name. Arrow area is the largest labeled one. Also, the number of group of place names equals to that of arrow heads. Characters of the road sign are segmented by using vertical and horizontal histograms, and each character is recognized by using SAD (Sum of Absolute Difference). From the experiments, the proposed method has shown the higher recognition results than the image without reorientation.

도로시설물 관리를 위한 교통안전표지 인식 및 자동위치 취득 방법 연구 (The Road Traffic Sign Recognition and Automatic Positioning for Road Facility Management)

  • 이준석;윤덕근
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.155-161
    • /
    • 2013
  • PURPOSES: This study is to develop a road traffic sign recognition and automatic positioning for road facility management. METHODS: In this study, we installed the GPS, IMU, DMI, camera, laser sensor on the van and surveyed the car position, fore-sight image, point cloud of traffic signs. To insert automatic position of traffic sign, the automatic traffic sign recognition S/W developed and it can log the traffic sign type and approximate position, this study suggests a methodology to transform the laser point-cloud to the map coordinate system with the 3D axis rotation algorithm. RESULTS: Result show that on a clear day, traffic sign recognition ratio is 92.98%, and on cloudy day recognition ratio is 80.58%. To insert exact traffic sign position. This study examined the point difference with the road surveying results. The result RMSE is 0.227m and average is 1.51m which is the GPS positioning error. Including these error we can insert the traffic sign position within 1.51m CONCLUSIONS: As a result of this study, we can automatically survey the traffic sign type, position data of the traffic sign position error and analysis the road safety, speed limit consistency, which can be used in traffic sign DB.

세그멘테이션 알고리즘을 사용한 도로 Sign 인식 모델 (Recognition Model of Road Signs Using Image Segmentation Algorithm)

  • 황영;송정영
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.233-237
    • /
    • 2013
  • 이미지 인식은 패턴인식의 중요한 한 연구 분야이다. 본 논문은 이미지 세그멘테이션 알고리즘을 소개하고, 이의 응용으로 도로 Sign 인식시스템에 적용하여 그 결과를 고찰하였다. 본 논문에서, 우리는 이미지 프로세싱 기술의 도움으로 도로 Sign 의 체계적인 연구를 하였고, 이에 해당하는 알고리즘을 만들었다. 도로 Sign을 인식하기 위하여, 본 논문은 이미지 세그멘테이션 알고리즘 파트와 이미지 인식파트의 두 부분으로 나누어서 기술하였다. 인식실험은 도로 Sign 인식 알고리즘 모델이 스마트 폰에 유용하게 사용될 것과, 그 외 여러분야에 사용될 수 있음을 보여 준다.

연결 성분 분석과 크기 정규화를 이용한 도로 노면 표시와 숫자 인식 (Recognition of Road Surface Marks and Numbers Using Connected Component Analysis and Size Normalization)

  • 정민철
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.22-26
    • /
    • 2022
  • This paper proposes a new method for the recognition of road surface marks and numbers. The proposed method designates a region of interest on the road surface without first detecting a lane. The road surface markings are extracted by location and size using a connection component analysis. Distortion due to the perspective effect is minimized by normalizing the size of the road markings. The road surface marking of the connected component is recognized by matching it with the stored road marking templates. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the recognition of road surface marks and numbers.

도로표지 정보 활용을 위한 도로표지 인식 및 지오콘텐츠 생성 기법 (Road Sign Recognition and Geo-content Creation Schemes for Utilizing Road Sign Information)

  • 성택영;문광석;이석환;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.252-263
    • /
    • 2016
  • Road sign is an important street furniture that gives some information such as road conditions, driving direction and condition for a driver. Thus, road sign is a major target of image recognition for self-driving car, ADAS(autonomous vehicle and intelligent driver assistance systems), and ITS(intelligent transport systems). In this paper, an enhanced road sign recognition system is proposed for MMS(Mobile Mapping System) using the single camera and GPS. For the proposed system, first, a road sign recognition scheme is proposed. this scheme is composed of detection and classification step. In the detection step, object candidate regions are extracted in image frames using hybrid road sign detection scheme that is based on color and shape features of road signs. And, in the classification step, the area of candidate regions and road sign template are compared. Second, a Geo-marking scheme for geo-content that is consist of road sign image and coordinate value is proposed. If the serious situation such as car accident is happened, this scheme can protect geographical information of road sign against illegal users. By experiments with test video set, in the three parts that are road sign recognition, coordinate value estimation and geo-marking, it is confirmed that proposed schemes can be used for MMS in commercial area.

자율주행을 위한 교통신호 인식에 관한 연구 (A study on the recognition to road traffic sign and traffic signal for autonomous navigation)

  • 고현민;이호순;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1375-1378
    • /
    • 1997
  • In this paper, we presents the algorithm which is to recognize the traffic sign on the road the traffic signal in a video image for autonomous navigation. First, the rocognition of traffic sign on the road can be detected using boundary point estimation form some scan-lines within the lane deducted. For this algorithm, index matrix method is used to detemine what sign is. Then, the traffic signal recognition is performed by usign the window minified by several scan-lines which position may be expected. For this algoritm, line profile concept is adopted.

  • PDF

위치기반 유사도 검증을 이용한 도로표지 안내지명 자동인식 개선방안 연구 (A Study on the Improvement of Automatic Text Recognition of Road Signs Using Location-based Similarity Verification)

  • 정규수
    • 한국ITS학회 논문지
    • /
    • 제18권6호
    • /
    • pp.241-250
    • /
    • 2019
  • 도로표지는 도로 이용자를 위한 시설물로서 관리 및 유지보수의 편의성 증진을 위해 국토교통부에서는 관리시스템을 구축하여 운영 중에 있다. 향후 자율주행 시대에 도로표지의 역할은 감소하겠지만 그 필요성은 지속되고 있다. 이에 도로표지에 표기된 안내지명의 정확한 기계적 판독을 위해 도로표지 자동인식 장비를 개발하여 영상 기반의 문자 인식 기술을 적용하고 있지만 불규칙적인 규격과 수작업 제조, 조도, 빛반사, 강우 등 외부환경에 의해 오인식되는 경우가 다수 발생하고 있다. 본 연구에서는 영상 분석 등으로 극복할 수 없는 오인식 결과를 개선하기 위해 위치기반의 안내지명 후보를 도출하여 기준으로 하고, 오인식된 지명의 음소 분리를 통한 레벤슈타인 문자 유사도 검증 방법을 이용해 도로표지 안내지명 자동인식율을 개선하고자 하였다.

Gradation Image Processing for Text Recognition in Road Signs Using Image Division and Merging

  • 정규수
    • 한국ITS학회 논문지
    • /
    • 제13권2호
    • /
    • pp.27-33
    • /
    • 2014
  • This paper proposes a gradation image processing method for the development of a Road Sign Recognition Platform (RReP), which aims to facilitate the rapid and accurate management and surveying of approximately 160,000 road signs installed along the highways, national roadways, and local roads in the cities, districts (gun), and provinces (do) of Korea. RReP is based on GPS(Global Positioning System), IMU(Inertial Measurement Unit), INS(Inertial Navigation System), DMI(Distance Measurement Instrument), and lasers, and uses an imagery information collection/classification module to allow the automatic recognition of signs, the collection of shapes, pole locations, and sign-type data, and the creation of road sign registers, by extracting basic data related to the shape and sign content, and automated database design. Image division and merging, which were applied in this study, produce superior results compared with local binarization method in terms of speed. At the results, larger texts area were found in images, the accuracy of text recognition was improved when images had been gradated. Multi-threshold values of natural scene images are used to improve the extraction rate of texts and figures based on pattern recognition.

최근접 이웃 결정방법 알고리즘을 이용한 도로교통안전표지판 영상인식의 구현 (A Study on the Implement of Image Recognition the Road Traffic Safety Information Board using Nearest Neighborhood Decision Making Algorithm)

  • 정진용;김동현;이소행
    • 경영과정보연구
    • /
    • 제4권
    • /
    • pp.257-284
    • /
    • 2000
  • According as the drivers increase who have their cars, the comprehensive studies on the automobile for the traffic safety have been raised as the important problems. Visual Recognition System for radio-controled driving is a part of the sensor processor of Unmanned Autonomous Vehicle System. When a driver drives his car on an unknown highway or general road, it produces a model from the successively inputted road traffic information. The suggested Recognition System of the Road Traffic Safety Information Board is to recognize and distinguish automatically a Road Traffic Safety Information Board as one of road traffic information. The whole processes of Recognition System of the Road Traffic Safety Information Board suggested in this study are as follows. We took the photographs of Road Traffic Safety Information Board with a digital camera in order to get an image and normalize bitmap image file with a size of $200{\times}200$ byte with Photo Shop 5.0. The existing True Color is made up the color data of sixteen million kinds. We changed it with 256 Color, because it has large capacity, and spend much time on calculating. We have practiced works of 30 times with erosion and dilation algorithm to remove unnecessary images. We drawing out original image with the Region Splitting Technique as a kind of segmentation. We made three kinds of grouping(Attention Information Board, Prohibit Information Board, and Introduction Information Board) by RYB( Red, Yellow, Blue) color segmentation. We minimized the image size of board, direction, and the influence of rounding. We also minimized the Influence according to position. and the brightness of light and darkness with Eigen Vector and Eigen Value. The data sampling this feature value appeared after building the learning Code Book Database. The suggested Recognition System of the Road Traffic Safety Information Board firstly distinguished three kinds of groups in the database of learning Code Book, and suggested in order to recognize after comparing and judging the board want to recognize within the same group with Nearest Neighborhood Decision Making.

  • PDF