• Title/Summary/Keyword: Road Geometry

Search Result 159, Processing Time 0.021 seconds

Development of Measure of Effectiveness (MOE) and Algorithm for Hazard Level at Curve Sections (곡선부 위험도 판정척도 및 알고리즘 개발)

  • Ha, Tae-Jun;Jeong, Jun-Hwa;Lee, Jeong-Hwan;Lee, Suk-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.627-638
    • /
    • 2008
  • At present, there is a no rational MOE for evaluating hazard level at curve sections. Therefore, this study focus on developing the MOE and algorithm for hazard level at curve sections. The scopes of this study limited to rural two-way roads. Actual data used is accident, geometric features, safety facilities of the selected sites at curve sections. In order to develop MOE for hazard level at curve sections, accident contributing factors were classified by road geometry, visual guidance facility, speed and driver factor. A relationship between the four factors mentioned and accidents was conducted. And, the MOE for hazard level at curve sections was derived from the previous relationship analysis, and the algorithm for hazard level was developed. Finally, worksheets were suggested based on the MOE and algorithm for road designers. These developed MOE and algorithm can be used to reduce serious accident contributing factors when designing roads and also, these will be used to determine an order of priority when reconstructing roads.

Determining Ideal Distance between Consecutive Exit Ramps (고속도로 연결로상 연속 분류지점 간의 이격거리 검토)

  • Lee, Seongkwan Mark;Lee, Ki Young;Jang, Jung Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.65-72
    • /
    • 2011
  • When an expressway intersects another expressway, a unique connector needs to be designed between the two consecutive exit ramps. In such a case, it is important to design a connector such that there is enough distance for drivers to find their way safely. A current design manual in Korea prescribes the minimum length of the connector as 240 m. In this research, we have suggested a method for calculating the minimum length of a connector in order to check the feasibility of the currently prescribed length. For this purpose, we have attempted to determine the total perception-reaction time and lane-changing time required by a driver. For determining the driver's perception-reaction time, we have used the driver's decision time in addition to the conventional 2.5 s of perception-reaction time for stopping sight distances. We have considered both the design speed and the average travel speed for the calculation of the length. To evaluate the accuracy of the new method, we have chosen four sites on expressways for which relatively high accident rates were recorded. As a result, we could verify that the current limit (240 m) was sufficient for drivers to be able to change lanes in the given specific geometry. However, the prescribed limit should be revised in case the drivers' decision time is considered to be their perception-reaction time. All new approaches for calculating the ideal length of a connector have been carried out by taking into account the design speed as well as the average travel speed. Owing to the characteristics of the specific geometry for two consecutive exit ramps and the large difference between the design speed and the average travel speed in the objective areas, it is more realistic to use the proposed method by keeping the decision time equal to a driver's perception-reaction time, in order to determine the ideal distance that should be maintained between two consecutive exit ramps.

Concrete Pavement Expansion due to Alkali-Aggregate Reaction and Damage Prevention of Bridges (알칼리-골재반응에 의한 콘크리트 포장 팽창과 그에 따른 교량손상 감소방안)

  • Woo, Jeong-Won;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.67-73
    • /
    • 2017
  • The concrete pavement slabs that suffer expansion due to the Alkali-Aggregate Reaction(AAR) increase and the increase consequently causes unexpected displacement of bridge abutment. As the expansion due to the AAR is greater than that due to the temperature change, lethal load can act on bridge abutment. Therefore appropriate preventive measures may be necessary. The degree of expansion by AAR depends on the severity of AAR and geometry condition of concrete pavement and road structure. In order to prevent damage to bridge, it is effective to release the expansion force of the concrete. It would be advantageous to replace the concrete pavement with asphalt for a long section of concrete pavement.

DESIGN AND IMPLEMENTATION OF FEATURE-BASED 3D GEO-SPATIAL RENDERING SYSTEM USING OPENGL API

  • Kim Seung-Yeb;Lee Kiwon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.321-324
    • /
    • 2005
  • In these days, the management and visualization of 3D geo-spatial information is regarded as one of an important issue in GiS and remote sensing fields. 3D GIS is considered with the database issues such as handling and managing of 3D geometry/topology attributes, whereas 3D visualization is basically concerned with 3D computer graphics. This study focused on the design and implementation for the OpenGL API-based rendering system for the complex types of 3D geo-spatial features. In this approach 3D features can be separately processed with the functions of authoring and manipulation of terrain segments, building segments, road segments, and other geo-based things with texture mapping. Using this implementation, it is possible to the generation of an integrated scene with these complex types of 3D features. This integrated rendering system based on the feature-based 3D-GIS model can be extended and effectively applied to urban environment analysis, 3D virtual simulation and fly-by navigation in urban planning. Furthermore, we expect that 3D-GIS visualization application based on OpenGL API can be easily extended into a real-time mobile 3D-GIS system, soon after the release of OpenGLIES which stands for OpenGL for embedded system, though this topic is beyond the scope of this implementation.

  • PDF

Traffic Accident Model of Urban Rotary and Roundabout by Type of Collision based on Land Use (토지이용에 따른 충돌 유형별 도시부 로터리 및 회전교차로 사고모형)

  • Lee, Min Yeong;Kim, Tae Yang;Park, Byung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.107-113
    • /
    • 2017
  • This paper deals with the traffic factors related to the collisions of circular intersections. The purpose of this study is to develop traffic accident models by type of collision based on land use. In pursuing the above, the traffic accident data from 2010 to 2014 were collected from the "Traffic Accident Analysis System (TAAS)" data set of the Road Traffic Authority. A multiple regression model was utilized in this study to develop the traffic accident models by type of collision. 17 explanatory variables such as geometry and traffic volume factors were used. The main results are as follows. First, the null hypothesis that the type of land use does not affect the number of accidents by type of collision is rejected. Second, 10 accident models by type of collision based on land use are developed, which are all statistically significant. Finally, the ADT, inscribed circle diameter, bicycle lane, area of central island, number of speed hump, circulatory roadway width, splitter island, area of circulatory roadway, mean number of entry lane and mean width of entry lane are analyzed to see how they affect accident by type of accident based on land use.

Topology and geometry optimization of different types of domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.

A Development of Traffic Accident Models at 4-legged Signalized Intersections using Random Parameter : A Case of Busan Metropolitan City (Random Parameter를 이용한 4지 신호교차로에서의 교통사고 예측모형 개발 : 부산광역시를 대상으로)

  • Park, Minho;Lee, Dongmin;Yoon, Chunjoo;Kim, Young Rok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.65-73
    • /
    • 2015
  • PURPOSES : This study tries to develop the accident models of 4-legged signalized intersections in Busan Metropolitan city with random parameter in count model to understanding the factors mainly influencing on accident frequencies. METHODS : To develop the traffic accidents modeling, this study uses RP(random parameter) negative binomial model which enables to take account of heterogeneity in data. By using RP model, each intersection's specific geometry characteristics were considered. RESULTS : By comparing the both FP(fixed parameter) and RP modeling, it was confirmed the RP model has a little higher explanation power than the FP model. Out of 17 statistically significant variables, 4 variables including traffic volumes on minor roads, pedestrian crossing on major roads, and distance of pedestrian crossing on major/minor roads are derived as having random parameters. In addition, the marginal effect and elasticity of variables are analyzed to understand the variables'impact on the likelihood of accident occurrences. CONCLUSIONS : This study shows that the uses of RP is better fitted to the accident data since each observations'specific characteristics could be considered. Thus, the methods which could consider the heterogeneity of data is recommended to analyze the relationship between accidents and affecting factors(for example, traffic safety facilities or geometrics in signalized 4-legged intersections).

Geometric Design of Bus Bay Based on Vehicle Trajectory Analysis (차량 이동궤적 기반 버스정차대 기하구조 연구)

  • Kim, Yong Seok;Lee, Suk Ki
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.33-36
    • /
    • 2015
  • PURPOSES : It is desirable for buses to be parallel to the face of the bus shelter at a bus stop. In this way, passengers can safely use the buses without moving into the vehicle area. The study was a review of the current bus bay geometric guidelines, to determine whether they lead buses to stop parallel to the face of the bus shelter by analyzing vehicle trajectory. METHODS : A commercial software program for vehicle trajectory analysis was used under our assumptions about bus dimensions and geometric values. The final position of the bus was analyzed for multiple trajectory simulations, reflecting various geometric alternatives. RESULTS : Within the scope of the study, we concluded that the current design guidelines need to be revised by the design values suggested by the study. CONCLUSIONS : The results of the study suggested alternative design values for bus bay geometry, based on the assumption that buses should be parallel to the face of the bus shelter in order to prevent passengers from moving into the vehicle area.

Three-dimensional finite element modeling of a transverse top-down crack in asphalt concrete

  • Ayatollahi, Majid R.;Pirmohammad, Sadjad;Sedighiani, Karo
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.569-585
    • /
    • 2014
  • In this paper, a four-layer road structure consisting of an edge transverse crack is simulated using three-dimensional finite element method in order to capture the influence of a single-axle wheel load on the crack propagation through the asphalt concrete layer. Different positions of the vehicular load relative to the cracked area are considered in the analyses. Linear elastic fracture mechanics (LEFM) is used for investigating the effect of the traffic load on the behavior of a crack propagating within the asphalt concrete. The results obtained show that the crack front experiences all three modes of deformation i.e., mode I, mode II and mode III, and the corresponding stress intensity factors are highly affected by the crack geometry and the vehicle position. The results also show that for many loading situations, the contribution of shear deformation (due to mode II and mode III loading) is considerable.

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.