• Title/Summary/Keyword: Road Element

검색결과 450건 처리시간 0.028초

수리 형태학적 연산자를 이용한 지도 화상에서 도로 정보의 특징 추출에 대한 효율성 평가 (Efficiency Evaluation of the Feature Extraction of Roads from Map Image using Morphological Operators*)

  • 남태희
    • 한국컴퓨터정보학회논문지
    • /
    • 제4권2호
    • /
    • pp.19-26
    • /
    • 1999
  • 화상 처리 방법은 최근 다양한 기법을 적용하여 지도 정보 시스템 구축에 대한 요구가 급격히 대두되고 있다. 따라서 본 논문은 이러한 GIS(Geographic Information System) 시스템을 효율적으로 구축하기 위한 방안으로, 기존 지도 도형이나 수 작업에 의해 작성된 도면을 컴퓨터로 스케닝하여 각종 도로 정보 인식 추출하는 방법을 제안하였다. 이러한 화상 정보 인식 방안간으로 많은 알고리듬들이 제시되고 있지만, 실제로 그 활용 면에서, 인식 분석 처리 과정이 매우 복잡함으로 인하여 충분히 반영되지 못하고 있는 한계성을 가지고 있다. 따라서 본 논문은 지도 화상을 스케닝하여 도로 정보를 효율적으로 분리추출하기 위하여 $3{\times}3$ 방향성 구조요소, 즉 수리 형태학적 기법에서 Erosion과 Dilation 그리고 Opening과 Closing, 최적의 Structuring Element를 적용하여, 대상 화상인 지도에서 최적의 도로정보와 문자열간의 특징 분리 추출의 유효성을 검증하고자 한다.

  • PDF

LS-DYNA를 이용한 비탈면에 설치된 가드레일 지주의 동적거동 (Analysis of the Dynamic Behavior of Guardrail Posts in Sloping Ground using LS-DYNA)

  • 이동우;우광성
    • 한국도로학회논문집
    • /
    • 제19권1호
    • /
    • pp.21-28
    • /
    • 2017
  • PURPOSES : This paper presents a finite element model to accurately represent the soil-post interaction of single guardrail posts in sloping ground. In this study, the maximum lateral resistance of a guardrail post has been investigated under static and dynamic loadings, with respect given to several parameters including post shape, embedment depth, ground inclination, and embedment location of the steel post. METHODS : Because current analytical methods applied to horizontal ground, including Winkler's elastic spring model and the p-y curve method, cannot be directly applied to sloping ground, it is necessary to seek an alternative 3-D finite element model. For this purpose, a 3D FHWA soil model for road-base soils, as constructed using LS-DYNA, has been adopted to estimate the dynamic behavior of single guardrail posts using the pendulum drop test. RESULTS : For a laterally loaded guardrail post near slopes under static and dynamic loadings, the maximum lateral resistance of a guardrail post has been found to be reduced by approximately 12% and 13% relative to the static analysis and pendulum testing, respectively, due to the effects of ground inclination. CONCLUSIONS : It is expected that the proposed soil material model can be applied to guardrail systems installed near slopes.

실험계획법을 이용한 다목적 차량의 측면하중 측정을 위한 3축 로드셀 개발 (Development of 3-axis Loadcell for Measuring the Side Force of MPV Using Design of Experiment)

  • 추성일;박준협;이진근;박지영
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.83-93
    • /
    • 2007
  • This paper represents the development of 3-axises loadcell for measuring the side-force of suspension module of MPV(Multi Purposed Vehicle). The side force causes the failure of damper, such as leakage. The loadcell was developed using strain gauges, and the Wheastone bridge circuit to compensate for the cross-talk between the each axises and the measurement error by temperature. Structure analysis of loadcell was accomplished with FEM(Finite Element Method) to optimize the location of strain gages. The design optimization for important factors that have an effect on performance of loadcell was accomplished by using DOE(Design of Experiment). Loadcell was produced and successfully tested, showing good sensitivity and low cross-talk. The cross-talk of the developed loadcell is bellow 5%. The load history was measured at proving ground. The maximum side-force, the longitudinal force, and vertical force of MPV are 4.2 kN, 8.0 kN, and 17.0 kN, respectively, at Belgian road.

마찰 에너지 해석을 통한 러버 트랙(Rubber Track)의 마모율 예측 (Prediction of Wear Rate for Rubber Track by Using Frictional Energy Analysis)

  • 강종진;조진래;정의봉
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.125-133
    • /
    • 2011
  • The wear of rubber track being in contact with the road surface is an important subject because it decreases the traction performance and the operating efficiency of tracked vehicle. For the above reasons, many attempts have been made to quantitatively calculate the rubber track. However, it depends on the experimental methods which are highly time- and cost-consuming. Therefore, the numerical simulation approach is highly desirable, but it needs to model the complex geometry and the material behavior in details as well as the interaction with the road surface. In this study, the rubber track and its material behavior are elaborately modeled since these factors are very important in the prediction of the wear rate of the rubber track. Accordingly to the studies on the rubber wear by previous investigations, it has been found that the wear is greatly influenced by the frictional energy. The frictional energy of rubber track is computed by utilizing the 3D finite element analysis of the rubber track, and the wear rate is evaluated making use of the frictional energy and a wear model.

Study on wind-induced vibration response of Jiayuguan wooden building

  • Teng Y. Xue;Hong B. Liu;Ting Zhou;Xin C. Chen;Xiang Zhang;Zhi P. Zou
    • Wind and Structures
    • /
    • 제37권3호
    • /
    • pp.245-254
    • /
    • 2023
  • In this paper, the wind-induced response of Jiayuguan wooden building (world cultural heritage) in Northwest China was studied. ANSYS finite element software was used to establish four kinds of building models under different working conditions and carry out modal analysis. The simulation results were compared with the field dynamic test results, obtaining the model which reflects the real vibration characteristics of the wooden tower. Time history data of fluctuating wind speed was obtained by MATLAB programming. Time domain method and ANSYS were used to analyze the wind-induced vibration response time history of Jiayuguan wooden building, obtaining the displacement time history curve of the structure. It was suggested that the wind-induced vibration coefficient of Jiayuguan wooden building is 1.76. Through analysis of the performance of the building under equivalent static wind load, the maximum displacement occurs in the three-story wall, gold column and the whole roof area, and the maximum displacement of the building is 5.39 cm. The ratio of the maximum stress value to the allowable value of wood tensile strength is 45 %. The research results can provide reference for the wind resistant design and protection of ancient buildings with similar structure to Jiayuguan wooden tower.

도로기초에서 교통 및 환경하중에 의한 비선형 현장응력 평가 (Evaluation of Traffic Load and Moisture-Induced Nonlinear In-situ Stress on Pavement Foundation Layers)

  • 박성완;황규영;정문경;서영국
    • 한국지반공학회논문집
    • /
    • 제25권7호
    • /
    • pp.47-54
    • /
    • 2009
  • 도로하부에 대한 현장에서의 역학적인 거동에 대한 이해는 교통기반시스템의 장기공용성을 예측하는데 매우 중요하다. 이러한 현장거동에서 지반재료에 대한 회복변형 거동 정량화는 교통하중과 환경조건을 고려한 역학적인 해석이 필수적이다. 따라서 본 논문에서는 한국도로공사 시험도로에서 현장자료의 계측과 분석을 통하여 선택된 도로하부 입상재료에 대한 구성방정식을 활용한 비선형 재료거동과 응력을 예측 분석하고 이를 현장자료와 비교하고 검증하였다.

도로포장 구조해석을 위한 점탄성 유한요소 해석코드 개발 (Development of Viscoelastic Finite Element Analysis Code for Pavement Structures)

  • 이창준;유평준;최지영;엄병식
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-9
    • /
    • 2012
  • PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using $C^{+}^{+}$ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.

이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토 (Feasibility Study on Similarity Principle in Discrete Element Analysis)

  • 윤태영;박희문
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.

도시 및 산업환경 분진 및 토양중의 중금속 원소들의 분산에 관한 지구화학적 연구 (A Geochemical Study on the Dispersion of Heavy Metal Elements in Dusts and Soils in Urban and Industrial Environments)

  • 전효택;최완주
    • 자원환경지질
    • /
    • 제25권3호
    • /
    • pp.317-336
    • /
    • 1992
  • The garden soils, main road dusts, residential road dusts, and playground soils/dusts of Seoul, Geumsan, Onsan, and Taebaek areas were analyzed in order to investigate the level of heavy metal pollution by urbanization and industrialization. The soil pH is in the range of 5.48~8.40 and was generally neutral. The color of soils and dusts is mainly Raw Umber to dark greyish Raw Umber. Some samples from Taebaek city, a coal mining area, showed a deep black color due to contamination by coal dusts. Major minerals of the dusts and soils are quartz, feldspars, and micas, reflecting the composition of the parent rocks. However, pyrite was found as a major mineral in the samples of industrial road dusts of Onsan, a smelting area, and resicential road dusts of Taebaek. Thus, the high level of heavy metals in mining and smelting areas can be explained with the sulfide minerals. The mode of occurences of heavy metals in Seoul, a comprehensive urbanized area, were related to the metallic pollutants and organic materials through observation by scanning eletron microscopy. In main road and residential road dusts of Onsan area, Cd, Zn, and Cu were extremely high. Some industrial road and residential road dusts of Seoul area showed high Cu, Zn, and Pb contents, wereas some garden soils and residential road dusts of Taebaek area were high in As content. In general, the heavy metal contents in dust samples were two to three times higher than those in soil samples. Main road dust samples were the most reflective from the discriminant analysis of multi-element data. Cadmium, Sb, and Se in Onsan area, As in Taebaek area, Pb and Te in Seoul area were most characteristic in discriminating the studied areas. Therefore, Cd in smelting areas, As in coal mining areas, and Pb in metropolitan areas can be suggested as the characteristic elements of each pollution pattern. The dispersion of heavy metal elements in urban areas tends to orignate in main roads and deposit in garden soils through the atmosphere and residential roads. The heavy metal contamination in Seoul is characteristic in areas with high population, factory, road, and traffic decsities. Heavy metal contents are high in the vicinity of smelters in Onsan area and are decayed to background levels from one kilometer away from the smelters.

  • PDF

FWD 방향을 고려한 콘크리트 포장 하부 상태 평가 (Evaluation of State of Concrete Pavement Sublayers Considering Direction of FWD)

  • 이재훈;이재훈;손덕수;유주호;정진훈
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.69-78
    • /
    • 2014
  • PURPOSES : The purpose of this paper is showing that the state of pavement sublayers can be evaluated differently according to direction of FWD. METHODS : The concrete pavement slabs above subgrade without anything, subgrade with cavity, and box culvert were modeled by finite element method(FEM). The modeled pavements were analyzed by changing the direction of falling weight deflectometer(FWD). The deflection results obtained from FEM were used to calculate radius of relative stiffness and composite modulus of subgrade reaction using AREA method. Then, the analyzed results were compared to the results of the test performed at the Korea Expressway Corporation(KEC) test road. RESULTS : The composite modulus of subgrade reaction increased with subgrade elastic modulus, while radius of relative stiffness decreased. The pavement sections of pure earth showed the consistent results regardless of FWD direction. In case there was cavity, the radius of relative stiffness was larger and composite modulus of subgrade reaction was smaller when FWD was leaving the cavity than when approaching the cavity. This pattern became clear when the cavity got larger. In case of the section with box culvert, the pattern was opposite to the case of cavity. When the soil cover depth increased, the effect of box culvert got smaller. When the load was applied far from the cavity and box culvert, the effect was also declined. The test performed at the KEC test road showed identical results to those of finite element analysis. CONCLUSIONS : The direction of FWD should be considered in evaluation of the state of pavement sublayers because it can be evaluated differently even under identical condition.