• Title/Summary/Keyword: Rn222-concentration

Search Result 53, Processing Time 0.035 seconds

Radon Removal Efficiency of Activated Carbon Filter from Coconut (코코넛 기반 활성탄 필터의 라돈 제거 효율)

  • Yun-Jin Ahn;Gi-Sub Kim;Tae-Hwan Kim;Sang-Rok Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.141-149
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences plans to produce 225Ac, a therapeutic radio-pharmaceutical for precision oncology, such as prostate cancer. Radon, a radioactive gas, is generated by radium, the target material for producing 225Ac. The radon concentration is expected to be about 2000 Bq·m-3. High-concentration radon-generating facilities must meet radioactive isotope emission standards by lowering the radon concentration. However, most existing studies concerning radon removal using activated carbon filters measured radon levels at concentrations lower than 1000 Bq·m-3. This study measured 222Rn removal of coconut-based activated carbon filter under a high radon concentration of about 2000 Bq·m-3. The 222Rn removal efficiency of activated carbon impregnated with triethylenediamine was also measured. As a result, the 222Rn removal amount of the activated carbon filter showed sufficient removal efficiency in a 222Rn concentration environment of about 2000 Bq·m-3. In addition, despite an expectation of low radon reduction efficiency of Triethylenediamine-impregnated activated carbon, it was difficult to confirm a significant difference in the results. Therefore, it is considered that activated carbon can be used as a radioisotope exhaust filter regardless of whether or not Triethylenediamine is impregnated. The results of this study are expected to be used as primary data when building an air purification system for radiation safety management in facilities with radon concentrations of about 2000 Bq·m-3.

Modeling a Radon Environment System with Dose Sensitivity to the Controllable Parameters (라돈 환경계통의 제어 매개변수 모델링)

  • Zoo, Oon-Pyo;Kim, Kem-Joong;Chang, Si-Young
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.753-756
    • /
    • 1991
  • This paper aimed to analyse dose sensitivity to the controllable parameters of in-door radon $(^{222}Rn)$ and its decay products(Rn-D) by applying the input-output linear system theory. Physical behaviors of $^{222}Rn$ & Rn-D were analyzed in terms of $^{222}Rn$ gas generation, -migation and - infiltration to indoor environments, and the performance output-function(i.e. mean dose equivalent to Tracho-Bronchial(TB) lung region was assessed to the following ranges of the controllable parameters; a) the ventilation rate constant $({\lambda}_v)$ : $0{\sun}500[h^{-1}]$. b) the attachment rate constant$({\lambda}_a)$ : 0-500 $[h^{-1}]$. c) deposition rate constant $({\lambda}{_{d}^{u}})$: 0-50$[h^{-1}]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations. a) indoor ${222}Rn$ & Rn-D Behaviour: jacobi- Porstendorfer- Bruno model. b) lung dosimerty : Jacobi-Eisfeld model. Some of the major findings, which identify the effectiveness of this model, were as follows. a) ${\lambda}_v$ is most effective, dominant controllable parameters in dose reduction, if mechanical ventilation is applied. b) ${\lambda}_v$, depending on the air particle-concentration, reduces the dose somewhat within ${\lambda}_v$<1 $h^{-1}R range. However, the dose increases conversely, ${\lambda}_v$>1 $h^{-1}R range range. c) ${\lambda}{_{d}^{4}}$ reduces the dose linearly as ${\lambda}_v$ dose. Such dose(z-axis) sentivities are shown with three-dimensional plots whoes x,y-axes are combined 2out the 3 parameter${\lambda}_v{\lambda}_s,\;{\lambda}_d^s$.

  • PDF

Measurement of Rn-222 Gas Concentration of Newly Constructed Apartment House in Gwangju Gwangsan-Gu (광주광역시 광산구 소재 신축 아파트 라돈가스 농도 계측)

  • Jang, Hee jun;Lee, Sang bock
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.257-261
    • /
    • 2015
  • Radon is produced after the Uranium-238 and thorium-232 undergone radioactive decay process is a colorless, odorless inert gas is stored in a basement or an enclosed space. Building materials are made by a rock or soil materials. Form of radon gas is introduced into the lungs through the respiratory tract and deposited in the lungs or bronchial Daughter nuclides radon causes lung cancer. In this study, To subject the Constructed Apartment in Gwangju Gwangsan-Gu, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at Newly Constructed Apartment is low than United states in the radon concentration in air public 4 pCi called radon gas baseline maximum allowable concentrations. The exposure caused by radon concentration of new construction apartment when on the measurement results is expected to be insignificant. However, when radon gas like this is that it accumulates in the body and lungs get damaged due to exposure, such as lung cancer often open the windows to reduce the radon concentration measurements, such as in radiation protection aspects to the ventilation to reduce exposure it is considered necessary.

QA/QC for 222Rn analysis in groundwater (지하수 중 222Rn 분석을 위한 정도관리)

  • Jeong, Do Hwan;Kim, Moon Su;Kim, Hyun Koo;Kim, Hye Jin;Park, Sun Hwa;Han, Jin Seok;Ju, Byoung Kyu;Jeon, Sang Ho;Kim, Tae Seung
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.86-90
    • /
    • 2013
  • $^{222}Rn$ concentrations in the groundwater samples without standard material due to the short half-life (3.82 day) were measured through the establishment of the counting efficiency of LSC (Liquid Scintillation Counter) using a standard source of $^{226}Ra$. This study for Quality Assurance/Quality Control (QA/QC) of $^{222}Rn$ analysis was performed to analyze blank samples, duplicate samples, samples of groundwater sampling before and after. In-situ blank samples collected were in the range of 0.44~6.28 pCi/L and laboratory samples were in the range of 1.66~4.95 pCi/L. Their correlation coefficient was 0.9691 and the source contamination from sampling, migration and keeping of samples were not identified. The correlation coefficient between original and duplicate samples from 65 areas was 0.9987. Because radon is an inert gas, in case of groundwater sampling, it is considered to affect the radon concentration. We analyzed samples separately by groundwater sampling before and after using distilled water, but there is no significant difference for $^{222}Rn$ concentrations in distilled waters of two types.

The Study of Radon Activity and Uranium Concentration of Ground Water and Surface Water (지하수와 지표수에서의 라돈 및 우라늄의 실태 조사)

  • Oh, Youngmi;Lee, Jongbok;Shin, Kyungjin;Kim, Hakchul;Lee, Jaehee;Hwang, Sangchul;Jung, Sanggi;Lee, Sangtae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.201-205
    • /
    • 2007
  • This paper reports the amount of $^{222}Rn$ and $^{238}U$ in 18 sites of ground water and 30 sites of surface water. The instrument used to count $^{222}Rn$ activity was the liquid scintillation counter (LSC) which could resolute ${\alpha}$ and ${\beta}$ radiations. And $^{238}U$ was analyzed by the inductively coupled plasma (ICP). Radon and Uranium were not detected in raw and treated water which were sampled in a water treatment plant. However, radon ($^{222}Rn$) was high concentration in ground water from Jeon-la, Gang-won. So was uranium ($^{238}U$) in case of ground water from Gang-won, Choong-chung. Radon ($^{222}Rn$) activities were detected less than 15 pCi/L at 5 sampling points, 15~300 pCi/L at 7 sampling points, 300~4000 pCi/L at 6 sampling points. However, Radon ($^{222}Rn$) activities of all ground water samples were less than 4,000 pCi/L, which was bellow American Alternative Maximum Contamination Level (AMCL). Uranium ($^{238}U$) concentrations were less than $0.1{\mu}g/L$ at 5 sampling points, from $0.1{\mu}g/L$ to $20{\mu}g/L$ at 13 sampling points. Uranium was not detected in about 30% of the whole samples, but the concentration ranged from relatively low to high concentrations depending on the sampling point. The minimum detectable activity (MDA) of radon was 15 pCi/L. and the detection limit of uranium was $0.1{\mu}g/L$.

지하수의 라듐/라돈 동시측정을 위한 백그라운드 감마선 제어

  • Lee Gil-Yong;Yun Yun-Yeol;Jo Su-Yeong;Kim Yong-Je
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.308-311
    • /
    • 2005
  • [ $^{222}Rn\;and\;^{226}Ra$ ] in groundwater were determined simultaneously using a gamma-spectroscopy. A nitrogen flushing equipment has been used for elimination and stabilization of high and unstable background activity due to the radon and its progenies in counting shield and room. The aim of present work was to control the background activity for simultaneous measurement of radium$(^{226}Ra)$ and radon$(^{222}Rn)$ in groundwater using a gamma-spectrometry. Background activity was about 1.0dps and the standard deviation was about 50%, The background activity could be minimized using nitrogen flushing equipment in the range of 0.1 to 0.5 and the RSD was about 5% at the experimental condition. The detection limit of $^{222}Rn\;and\;^{226}Ra$ in groundwater was 0.5dps/L in the background control method. In most groundwater used in the work, radon activity was more than the detection limit. However, radium activity in some groundwater was less than the detection limit. If the low level radium in groundwater must be measured, preconcentration process such as concentration should be performed before measuring the groundwater.

  • PDF

The Importance of groundwater discharge for environmental assessment of Chinhae Bay (진해만 환경평가를 위한 해저지하수의 중요성)

  • Chung Chong Soo;Hong Gi Hoon;Kim Suk Hyun;Kim Young Il;Moon Duk Soo;Park Jun Kun;Choi Jun Sun;Yang Dong Beom
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.23-36
    • /
    • 2000
  • Bottom sea waters in eight stations including from inner bay to outer bay to understand the importance of the submarine groundwater discharge for the environmental assessment of Chinhae Bay was collected in August 1999 and January 2000. Generally, /sup 222/Rn is very useful tracer to assess the submarine groundwater discharge because it is 2-4 orders of magnitude more concentrated in groundwater compared to surface water. The /sup 222/Rn activities ranged between about 33 to 182 dpm/100kg within the bay. Higher activities more than 100 dpm/100kg were found at the inner bay. The /sup 226/Ra activities, its parent, however, were little different between stations. /sup 222/Rn activities at the same station varied with season. It suggests that the major source of /sup 222/Rn is not from the bottom sediment, but from the change of submarine groundwater discharge by precipitation. The contents of Cl/sup -/ and SO/sub 4//sup 2-/ in the groundwater of Wonjeon-ri were very high as 1,312 and 369 ppm, respectively, indicating that this groundwater along the Chinhae coast was affected by seawater. Therefore, the submarine groundwater in the inner Bay may discharge to the overlying water. It indicates that these submarine groundwater discharges may play an important role as another important source of nutrients in the Chinhae Bay, because groundwater around the Chinhae Bay showed high concentration of dissolved inorganic nutrients (average , nitrate>174 μM, silicate>262 μM). Therefore, further studies are required to assess the contribution by the submarine groundwater discharge in the biogeochemical processes of the Chinhae Bay.

  • PDF

Characterizing Groundwater Discharge and Radon Concentration in Coastal Waters, Busan City (부산 해안지역의 물의 라돈 농도와 지하수 유출 특성)

  • Ok, Soon-Il;Hamm, Se-Yeong;Lee, Yong-Woo;Cha, Eun-Jee;Kim, Sang-Hyun;Kim, In-Soo;Khim, Boo-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.53-66
    • /
    • 2011
  • Groundwater which infiltrated in recharge areas discharges in the forms of evapotranspiration, baseflow to streams, groundwater abstraction and eventually flows into the sea. This study characterized radon-222 concentration and electrical conductivity (EC) in coastal groundwater discharge, well groundwater, Ilkwang Stream water, and seawater in the coastal area of Busan Metropolitan City and subsequently estimated groundwater discharge rate to the sea. The median value of Rn-222 concentration is highest in well groundwater (18.36 Bq/L), and then decreases in the order of coastal groundwater discharge (15.92 Bq/L), Ilkwang Stream water (1.408 Bq/L), and seawater (0.030 Bq/L). The relationship between Rn-222 concentration and EC values is relatively strong in well groundwater and then in seawater. However, the relationship is not visible between coastal groundwater discharge and Ilkwang Stream water. The groundwater discharge rate to the sea is estimated as $3,130m^3$/day by using radon mass budget model and $16,788m^3$/day by using Darcy's law.

Occurrence of Natural Radioactive Materials in Borehole Groundwater and Rock Core in the Icheon Area (이천지역 시추공 지하수와 시추코어내 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Dong-Wook;Kim, Moon-Su;Lee, Young-Joon;Kim, Tae-Seung;Han, Jin-Seok;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.95-111
    • /
    • 2012
  • This study investigated the relationship between the geochemical environment and the occurrence of natural radioactive materials (uranium and Rn-222) in borehole groundwater at an Icheon site. The drill core recovered from the study site consists mainly of biotite granite with basic dykes. The groundwater samples were collected at four different depths in the borehole using the double-packed system. The pH range of the groundwater was 6.5~8.6, and the chemical type was Ca-$HCO_3$. The ranges of uranium and Rn-222 concentrations in the groundwater were 8.81~1,101 ppb and 5,990~11,970 pCi/L, respectively, and concentrations varied greatly with depth and collection time. The ranges of uranium and thorium contents in drill core were 0.53~18.3 ppm and 6.66~17.5 ppm, respectively. Microscope observations and electron microprobe analyses revealed the presence of U and Th as substituted elements for major composition of monazite, ilmenite, and apatite within K-feldspar and biotite. Although the concentration of uranium and thorium in the drill core was not high, the groundwater contained a high level of natural radioactive materials. This finding indicates that physical factors, such as the degree of fracturing of an aquifer and the groundwater flow rate, have a greater influence on the dissolution of radioactive materials than does the geochemical condition of the groundwater and rock. The origin of Rn-222 can be determined indirectly, using an interrelationship diagram of noble gas isotopes ($^3He/^4He$ and $^4He/^{20}Ne$).