Modeling a Radon Environment System with Dose Sensitivity to the Controllable Parameters

라돈 환경계통의 제어 매개변수 모델링

  • Published : 1991.07.18

Abstract

This paper aimed to analyse dose sensitivity to the controllable parameters of in-door radon $(^{222}Rn)$ and its decay products(Rn-D) by applying the input-output linear system theory. Physical behaviors of $^{222}Rn$ & Rn-D were analyzed in terms of $^{222}Rn$ gas generation, -migation and - infiltration to indoor environments, and the performance output-function(i.e. mean dose equivalent to Tracho-Bronchial(TB) lung region was assessed to the following ranges of the controllable parameters; a) the ventilation rate constant $({\lambda}_v)$ : $0{\sun}500[h^{-1}]$. b) the attachment rate constant$({\lambda}_a)$ : 0-500 $[h^{-1}]$. c) deposition rate constant $({\lambda}{_{d}^{u}})$: 0-50$[h^{-1}]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations. a) indoor ${222}Rn$ & Rn-D Behaviour: jacobi- Porstendorfer- Bruno model. b) lung dosimerty : Jacobi-Eisfeld model. Some of the major findings, which identify the effectiveness of this model, were as follows. a) ${\lambda}_v$ is most effective, dominant controllable parameters in dose reduction, if mechanical ventilation is applied. b) ${\lambda}_v$, depending on the air particle-concentration, reduces the dose somewhat within ${\lambda}_v$<1 $h^{-1}R range. However, the dose increases conversely, ${\lambda}_v$>1 $h^{-1}R range range. c) ${\lambda}{_{d}^{4}}$ reduces the dose linearly as ${\lambda}_v$ dose. Such dose(z-axis) sentivities are shown with three-dimensional plots whoes x,y-axes are combined 2out the 3 parameter${\lambda}_v{\lambda}_s,\;{\lambda}_d^s$.

Keywords