DOI QR코드

DOI QR Code

Characterizing Groundwater Discharge and Radon Concentration in Coastal Waters, Busan City

부산 해안지역의 물의 라돈 농도와 지하수 유출 특성

  • Ok, Soon-Il (Division of Earth Environmental System, Pusan National University) ;
  • Hamm, Se-Yeong (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Yong-Woo (Climate and Marine Environment Team, Korea Marine Environment Management Corporation) ;
  • Cha, Eun-Jee (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Sang-Hyun (School of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, In-Soo (Department of Geological Sciences, Pusan National University) ;
  • Khim, Boo-Keun (Division of Earth Environmental System, Pusan National University)
  • 옥순일 (부산대학교 지구환경시스템학부) ;
  • 함세영 (부산대학교 지구환경시스템학부) ;
  • 이용우 (해양환경관리공단 기후수질팀) ;
  • 차은지 (부산대학교 지구환경시스템학부) ;
  • 김상현 (부산대학교 사회환경시스템공학부) ;
  • 김인수 (부산대학교 지질환경과학과) ;
  • 김부근 (부산대학교 지구환경시스템학부)
  • Received : 2011.08.17
  • Accepted : 2011.09.06
  • Published : 2011.10.31

Abstract

Groundwater which infiltrated in recharge areas discharges in the forms of evapotranspiration, baseflow to streams, groundwater abstraction and eventually flows into the sea. This study characterized radon-222 concentration and electrical conductivity (EC) in coastal groundwater discharge, well groundwater, Ilkwang Stream water, and seawater in the coastal area of Busan Metropolitan City and subsequently estimated groundwater discharge rate to the sea. The median value of Rn-222 concentration is highest in well groundwater (18.36 Bq/L), and then decreases in the order of coastal groundwater discharge (15.92 Bq/L), Ilkwang Stream water (1.408 Bq/L), and seawater (0.030 Bq/L). The relationship between Rn-222 concentration and EC values is relatively strong in well groundwater and then in seawater. However, the relationship is not visible between coastal groundwater discharge and Ilkwang Stream water. The groundwater discharge rate to the sea is estimated as $3,130m^3$/day by using radon mass budget model and $16,788m^3$/day by using Darcy's law.

Keywords

References

  1. 김득호, 2010, 부산지역 해안용출수의 수리지질학적 특성 연구, 부산대학교 대학원 이학석사 학위논문, p. 123.
  2. 김용호, 배상근, 2005, 부동지구의 해안지하수 유출량, 한국수자원학회 학술발표 논문집, 1179-1183.
  3. 박관석, 김규범, 양한섭, 2004, 제주도 해안에서 해저지하수의 유출에 의한 환경화학적 특성과 유출량 측정, 한국해양공학회, 춘계학술대회 논문집.
  4. 박남식, 홍성훈, 서경수, 2007, 해안 지하수 최적관리를 위한 개발가능량 산정 기법, 한국수자원학회논문집, 40(8), 665-675.
  5. 백승균, 박맹언, 2005, 시계열 수질 분석에 의한 제주도의 해저용출수 탐사 및 검증, 자원환경지질, 36(4), 359-409.
  6. 손치무, 이상만, 김영기, 김상욱, 김형식, 1978, 동래.월내 도폭 (1:50000) 및 설명서, 자원개발연구소, p. 27.
  7. 양한섭, 황동운, 2007, 부산 남동지역 연안 대수층내 지하수의 지화학적 특성과 유출, 한국수산학회지, 40(3), 167-177.
  8. 이대근, 김형수, 박찬석, 원종호, 김규범, 2002, 거제도 해안유출 지하수 예비조사 및 활용방안 연구, 한국지하수토양환경학회 추계학술발표회, 253-256.
  9. 이상규, 1994, 제주도 지하수 문제에서 물리탐사의 역할, 대한지하수환경학회, 전략광물자원 연구센터-제주도 지하수자원의 환경학적 보전과 개발 이용, 75-91.
  10. 장태우, 강필종, 박석환, 황상구, 이동우, 1983, 부산.가덕 지질도폭(1:50000) 및 설명서, 한국동력자원연구소, p. 22.-675.
  11. 한국수자원공사, 2003, 부산지역 지하수 기초조사.
  12. 홍성훈, 한수영, 박남식, 2003, 해안지역의 지하수개발 가능량 평가, 대한토목학회논문집, 23(3B), 201-207.
  13. 황동운, 김규범, 이재영, 2010, 한반도 주변 연안 해저를 통한 담지하수의 유출: 미래 수자원으로서의 중요성, 한국해양학회지, 15, 192-202.
  14. Anthony, J.S., David, E.H., Jeffrey, and V.T., 2008, Wave effects on submarine groundwater seepage measurement, Advances in Water Resources, 32, 820-833.
  15. Boehm, A.B., Shellenbarger, G.G., and Paytan, A., 2004, Groundwater discharge: Potential association with focal indicator bacteria in the surf zone, Environmental Science and Technology, 38(13), 3558-3566. https://doi.org/10.1021/es035385a
  16. Bugna, G.C., Chanton, J.P., Cable, J.E., Burnett, W.C., and Cable, P.H., 1996. The importance of groundwater discharge to the methane budgets of nearshore and continental shelf waters of the northeastern Gulf of Mexico. Geochimica et Cosmochimica Acta, 60(23), 4735-4746. https://doi.org/10.1016/S0016-7037(96)00290-6
  17. Burnett, W.C. and Taniguchi, M., 2001, Measurement and significance of the direct discharge of groundwater into the coastal zone, Journal of Sea Research, 46, 109-116. https://doi.org/10.1016/S1385-1101(01)00075-2
  18. Burnett, W.C., Chanton, J.P, Christoff, J., Kontar, E., Lambert, M., Moore, W.S., O'Rourke, D., Smith, C., Smith, L., and Taniguchi, M., 2002. Assessing methodologies for measuring groundwater discharge to the ocean, EOS, 83, 117-123.
  19. Burnett, W.C. and Dulaiova, H., 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements, Journal of Environmental Radioactivity, 69, 21-35. https://doi.org/10.1016/S0265-931X(03)00084-5
  20. Burnett, W.C., Aggarwal, P.K., Aureli, A., Bokuniewicz, H., Cable, J.E., Charette, M.A., Kontar, E., Krupa, S., Kulkarni, K.M., Loveless, A., Moore, W.S., Oberdorfer, J.A., Oliveira, J., Ozyurt, N., Povinec, P., Privitera, A.M.G., Rajar, R., Ramessur, R.T., Scholten, J., Stieglitz, T., Taniguchi, M., and Turner, J.V., 2006, Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment, 367, 498-543. https://doi.org/10.1016/j.scitotenv.2006.05.009
  21. Broecker, W.S. and Peng, T.-H., 1971, The vertical distribution of radon in the BOMEX area, Earth and Planetary Science Letter, 11, 99-108. https://doi.org/10.1016/0012-821X(71)90149-X
  22. Cable, J.E., Bugna, G.C., Burnett, W.C., and Chanton, J.P., 1996. Application of $^{222}Rn$ and $CH_4$ for assessment of groundwater discharge to the coastal ocean, Limnology & Oceanography, 41, 1347-1353. https://doi.org/10.4319/lo.1996.41.6.1347
  23. Charette, M.A., Buesseler, K.O., and Andrews, J.E., 2001, Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary, Limnology & Oceanography, 46, 456-470. https://doi.org/10.4319/lo.2001.46.2.0456
  24. Corbett, D.R., Chanton, J., Burnett, W.C., Dillon, K., Rutkowski, C., and Fourqurean, J.W., 1999, Patterns of groundwater discharge into Florida Bay, Limnology & Oceanography, 44, 1045-1055. https://doi.org/10.4319/lo.1999.44.4.1045
  25. Corbett, D.R., Dillon, K., Burnett, W.C., and Chanton, J.P., 2000, Estimating the groundwater contribution into Florida Bay via natural tracers, $^{222}Rn$ and $CH_4$, Limnology & Oceanography, 45, 1546-1557. https://doi.org/10.4319/lo.2000.45.7.1546
  26. D'Alessandro, W. and Vita, F., 2003. Groundwater radon measurements in the Mt. Etna area. Journal of Environmental Radioactivity, 65, 187-201. https://doi.org/10.1016/S0265-931X(02)00096-6
  27. D'Elia, C.F., Webb, K.L., and Porter, J.W., 1981, Nitrate-rich groundwater inputs to Discovery Bay, Jamaica: A significant source of N to local coral reefs?, Bulletin of Marine Science, 31, 903-910.
  28. Dulaiova, H., Burnett, W.C., Chanton, J.P., Moore, W.S., Bokuniewicz, H.J., Charette, M.A., and Sholkovitz, E., 2006, Assessment of groundwater discharge into West Neck Bay, New York, via natural tracers, Continental Shelf Research, 26(16), 1971-1983. https://doi.org/10.1016/j.csr.2006.07.011
  29. Dulaiova, H., Camilli, R., Henderson, P.B., and Charette, M.A., 2010, Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters, Journal of Environmental Radioactivity, 101, 553-563. https://doi.org/10.1016/j.jenvrad.2009.12.004
  30. Garrison, G.H., Glenn, C.R., and McMuntry, G.M., 2003, Measurement of submarine groundwater discharge in Kahana Bay, Oahu, Hawaii, Limnology & Oceanography, 48, 920-928. https://doi.org/10.4319/lo.2003.48.2.0920
  31. Harvey, F.E., Lee, D.R., Rudolph, D.L., and Frape, S.K., 1997, Locating groundwater discharge in large lakes using bottom sediment electrical conductivity mapping, Water Resources Research, 33, 2609-2615. https://doi.org/10.1029/97WR01702
  32. Hwang, D.W., Lee, Y.W., and Kim, G., 2005, Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea, Limnology & Oceanography, 50, 1393-1403. https://doi.org/10.4319/lo.2005.50.5.1393
  33. Hwang, D.W., Kim, G., Lee, Y.W., and Yang, H.S., 2005, Estimating submarine inputs of groundwater and nutrient to a coastal bay using radium isotopes, Marine Chemistry, 96, 61-71. https://doi.org/10.1016/j.marchem.2004.11.002
  34. Johannes, R.P., 1980, The ecological significance of the submarine discharge of groundwater, Marine Ecology-Progress Series, 3, 365-373. https://doi.org/10.3354/meps003365
  35. Kelly, R.P. and Moran, S.B., 2002, Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnology & Oceanography, 47, 1796-1807. https://doi.org/10.4319/lo.2002.47.6.1796
  36. Kim, G. and Hwang, D.-W., 2002, Tidal pumping of groundwater into the coastal ocean revealed from submarine 222Rn and CH4 monitoring, Geophysical Research Letters, 29(14), 23-27.
  37. Laroche, J., Nuzzi, R., Waters, R., Wyman, K., Falkowski, P.G., and Wallace, D.W.R., 1997, Brown tide blooms in Long Island's coastal waters linked to interannual variability in groundwater flow. Global Change Biology, 3, 397-410. https://doi.org/10.1046/j.1365-2486.1997.00117.x
  38. Lee, D.R., 1977, A device for measuring seepage flux in lakes and estuaries, Limnology & Oceanography, 22, 140-147. https://doi.org/10.4319/lo.1977.22.1.0140
  39. Lee, J.M. and Kim, G.B., 2006, A simple and rapid method for analyzing radon in coastal and ground waters using a radon-in-air monitor, Journal of Environmental Radioactivity, 89, 219-228. https://doi.org/10.1016/j.jenvrad.2006.05.006
  40. Li, E., Hyun, Y., Lee, K.-K., and Park, B.W., 2006, Numerical study of submarine groundwater discharge in a two-dimensional unconfined coastal aquifer, Proceedings of MODFLOW and MORE 2006: Managing Groundwater Systems.
  41. Mancini, C. and Giannelli, G., 1995, Determination of waterborne 222Rn concentrations using AC canisters, Health Physics, 69, 403-405. https://doi.org/10.1097/00004032-199509000-00014
  42. Martin, J.B., Cable, J.E., Swarzenski, P.W., Lindenberg, M., and Hartl, K., 2000, Coastal groundwater discharge to the Indian River Lagoon - physical measurements and water sources, Geological Society of America-Southeastern Section, Charleston, South Carolina, 222-24 March.
  43. Michael, H.A., Mulligan, A.E., and Harvey, C.F., 2005, Seasonal oscillations in water exchange between aquifers and the coastal ocean, Nature, 436(7054), 77-87.
  44. Moore, W.S., 1996, Large groundwater inputs to coastal waters revealed by $^{226}Ra$ enrichments, Nature, 380, 612-614. https://doi.org/10.1038/380612a0
  45. Swarzenski, P.W., 2007, U/Th series radionuclides as coastal groundwater tracers, Chemical Reviews, 107, 663-674. https://doi.org/10.1021/cr0503761
  46. Swarzenski, P.W., Bratten, J.F., and Crusius, J., 2004, Submarine ground-water discharge and its role in coastal processes and ecosystems, USGS open file report 2004-1226, p. 4.
  47. Taniguchi, M., Burnett, W.C., Dulaiova, H., Kontar, E.A., Povinec, P.P., and Moore, W.S., 2006, Submarine groundwater discharge measured by seepage meters in sicilian coastal waters, Continental Shelf Research, 26, 835-842. https://doi.org/10.1016/j.csr.2005.12.002
  48. Valiela, I., Costa, J., Foreman, K., Teal, J.M., Howes, B., and Aubrey, D., 1990, Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters, Biochemistry, 10, 177-197.
  49. Weigel, C., Chui, S.T., and Corbett, J.W., 1978, Renormalization-group calculation of defects in solids, Physical Review B, 18, 2377-2386. https://doi.org/10.1103/PhysRevB.18.2377
  50. Yang, H.S., Hwang, D.W., and Kim, G.B., 2002, Factors controlling excess radium in the Nakdong River estuary, Korea: submarine groundwater discharge versus desorption from riverine particles, Marine Chemistry, 78, 1-8. https://doi.org/10.1016/S0304-4203(02)00004-X
  51. Zektser, I.S. and Loaiciga, H.A., 1993, Groundwater fluxes in the global hydrologic cycle: past, present, and future, Journal of Hydrology, 144, 405-427. https://doi.org/10.1016/0022-1694(93)90182-9