DOI QR코드

DOI QR Code

QA/QC for 222Rn analysis in groundwater

지하수 중 222Rn 분석을 위한 정도관리

  • Received : 2012.11.10
  • Accepted : 2013.01.25
  • Published : 2013.02.25

Abstract

$^{222}Rn$ concentrations in the groundwater samples without standard material due to the short half-life (3.82 day) were measured through the establishment of the counting efficiency of LSC (Liquid Scintillation Counter) using a standard source of $^{226}Ra$. This study for Quality Assurance/Quality Control (QA/QC) of $^{222}Rn$ analysis was performed to analyze blank samples, duplicate samples, samples of groundwater sampling before and after. In-situ blank samples collected were in the range of 0.44~6.28 pCi/L and laboratory samples were in the range of 1.66~4.95 pCi/L. Their correlation coefficient was 0.9691 and the source contamination from sampling, migration and keeping of samples were not identified. The correlation coefficient between original and duplicate samples from 65 areas was 0.9987. Because radon is an inert gas, in case of groundwater sampling, it is considered to affect the radon concentration. We analyzed samples separately by groundwater sampling before and after using distilled water, but there is no significant difference for $^{222}Rn$ concentrations in distilled waters of two types.

짧은 반감기(3.82일)로 인하여 표준물질이 없어서 $^{226}Ra$ 표준선원을 이용하여 액체섬광계수기(Liquid Scintillation Counter)의 측정효율을 산정한 후 구하는 $^{222}Rn$ 농도 분석의 정도 관리를 위해서 blank(바탕)시료, 중복시료, 원수 채취전과 후의 시료 분석을 수행하였다. 현장 바탕시료는 0.44~6.28 pCi/L, 실험실 바탕시료는 1.66~4.95 pCi/L 값을 보였다. 둘 사이의 상관계수는 0.9691이였으며, 현장시료채취, 시료 이동, 시료 보관 상태에서 다른 오염원은 없었음을 확인하였다. 65개의 원시료와 중복시료의 상관계수는 0.9987을 보였다. 라돈은 불활성 기체이므로 시료를 채취할 때 손실에 의해 지하수 중 라돈 농도에 영향을 미칠 것으로 사료되어 증류수를 이용하여 현장 지하수 시료 채취 전과 후로 구분하여 비교분석하였으나 유의한 농도차이를 보이지 않았다.

Keywords

References

  1. USEPA, National primary drinking water standards, Office of Water, EPA 816-F-03-016 (2003).
  2. S. H. Ju and W. M. Je, 'Radon radioactivity and life environment', Gyechuk Munwhasa (1995).
  3. D. C. Shin, Y. S. Kim, J. Y. Moon, H. S. Park, J. Y. Kim and S. G. Park, Environmental Health and Toxicology, 7(4), 273-284 (2002).
  4. H. J. Noh, T. S. Kim, J. G. Park, J. K. Yoon, M. S. Kim, I. R. Chung, D. H. Jeong, B. K. Ju, S. H. Jeon, Y. E. Sim and Y. W. Baek, NIER Report, No. 2008-67-1017, p. 195 (2008).
  5. M. S. Kim, S. J. Yu, D. H. Kim, J. K. Yoon, H. J. Noh, H. S. Jeong, D. I. Jung, D. H. Jeong, B. K. Ju, T. S. Lim, Y. H. Park and S. K. Hong, NIER Report, No. 2009-61-1117, p. 238 (2009).
  6. USEPA, EPA Method 913: 'Radon in drinking water by liquid scintillation', Environmental Monitoring and Support Laboratory, Las Vegas, NV (1991).
  7. USEPA, Inter-laboratory collaborative study, EPA/600/2-87/082 (1987).
  8. Standard Method, 21st Edition, SM7500-Rn, APHA, AWWA, WEF (2005).
  9. Y. J. Kim, S. Y. Cho, Y. Y. Yoon and K. Y. Lee, J. KoSSGE., 11(5), 59-66 (2006).
  10. T. S. Kim, J. G. Park, I. C. Eom, J. K. Yoon, D. H. Jeong, K. C. Kang, D. G. Yun and J. C. Kwon, NIER Report, No. 2007-87-943, p. 155 (2007).

Cited by

  1. Study on222Rn reduction rate in boiling groundwater vol.28, pp.5, 2015, https://doi.org/10.5806/AST.2015.28.5.353